期刊文献+

微积分教学中几个问题的思考 被引量:1

Thinking on Several Problems in Calculus Teaching
下载PDF
导出
摘要 由微积分教学中出现的几个问题引发思考。首先讨论了国内外教材关于连续函数定义的差异;其次讨论了求极限过程中两个无穷小相减时的等价替换问题;最后给出伯努利不等式的再推广及应用,以期对微积分教学有所帮助。 Several problems in calculus teaching cause us to think.Firstly,the paper discusses the differences between the definitions of continuous functions in domestic and foreign textbooks.Secondly,the equivalent substitution problem of two infinitesimal subtracting is discussed.Finally,the extension and application of Bernoulli inequality are given.It is expected to be helpful to calculus teaching.
作者 马玉梅 刘恒 周文书 王金芝 齐淑华 MA Yu-mei;LIU Heng;ZHOU Wen-shu;WANG Jin-zhi;Qi Shu-hua(School of Science,Dalian Minzu University,Dalian Liaoning 116650,China)
出处 《大连民族大学学报》 2020年第5期434-436,共3页 Journal of Dalian Minzu University
基金 大连民族大学一流课程建设项目(YLKC20101) 大连民族大学教育教学改革专项基金项目(202018)。
关键词 连续 等价无穷小替换 伯努利不等式 continuous equivalent infinitesimal substitution Bernoulli inequality
  • 相关文献

参考文献4

二级参考文献23

  • 1李红,吕恕,钟守铭.Global Uniform Asymptotic Stability of Competitive Neural Networks with Different-Time Scales and Delay[J].Journal of Electronic Science and Technology of China,2005,3(2):126-129. 被引量:1
  • 2梁学斌,吴立德.Hopfield型神经网络的全局指数稳定性及其应用[J].中国科学(A辑),1995,25(5):523-532. 被引量:48
  • 3Hongtao Lu, Zhenya He. Global exponential stability of delayed competitive neural networks with different time scales [J]. Neural Network?, 2005, 18:243-250.
  • 4Lou Xuyang, Cui Baotong. Synchronization of competitive neural networks with different time scales [J]. Physica A, 2007, 380:563 - 576.
  • 5Grossberg S. Adaptive pattern classification ad universal recording [J]. Biological Cyrbernetics,1976, 23 : 121 - 134.
  • 6Amari S. Field theory of self-organizing neurat nets [J]. IEEE Trans. on Systems, Man, and Cybernetics, 1983, 13 : 741 - 748.
  • 7Zhihong Guan, Guanrong Chen. On delayed impulsive Hopfield neural networks [J]. Neural Networks, 1999, 12:273-280.
  • 8Cao Jinde, Wang J. Global asymptotic stability of a general class of recurrent neural networks with time varying delays [J]. IEEE Trans. Cirsy-I, 2003,50 : 34 - 44.
  • 9Cao Jinde, Wang J. Absolute exponential stability of recurrent neural networks with Lipschitz continuous activation functions and time delays [J]. Neu. Networks, 2004,17:379 - 390.
  • 10Mohamad. S, Gopalsamy. K. Dynamics of a class of discrete-time neural networks and their continuous-time counterparts[J]. Mathematics and Computers in Simulation, 2000, 53 : 1 - 39.

共引文献43

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部