期刊文献+

天然气管网大数据分析方法及发展建议 被引量:20

Approach of big data analysis and suggestions on development of natural gas pipeline network
原文传递
导出
摘要 天然气管网数据具有海量、多源异构、类型多样、价值密度差异大等特点,数据分析与应用难度大。借鉴电网、供应链、互联网等领域大数据研究成果,提出了基于数据处理、数据挖掘、多元数据综合分析的天然气管网大数据分析方法框架。从数据清洗、特征筛选、特征重构3个方面阐述了管网数据处理的方法与功能;结合具体业务和场景,明确了预测预警、模式识别、规则学习与推理是构成管网数据挖掘方法的基础;讨论了运用多元化管网数据的综合方法,指出发展多模态学习和联邦学习是打破管网数据壁垒、形成数据智慧的关键路径。天然气管网大数据分析应该不断完善管网的大数据"生态"、深入研究融合领域知识的机器学习方法,发展跨领域、可解释、可控制的管网大数据分析方法体系,为智慧管网技术提供理论基础。 Due to the characteristics,such as massiveness,multi-source,diversity and great difference of value density,of the data of natural gas pipeline network,it is of great difficulty to do data analysis and application.With reference to the study results of big data in power grid,supply chain and internet,a big data analysis framework of natural gas pipeline network based on data processing,data mining and comprehensive analysis of multivariate data is put forward.Definitely,the method and function of data processing is illustrated in terms of data cleaning,feature selection and reconstruction.Based on the specific business and scenarios,it is defined that prediction and early warning,model identification,rule learning and deduction are the basis to construct the data mining method of pipeline network.In addition,the comprehensive application of diversified data of pipeline network is discussed.It is also pointed out that the development of multimode learning and federated learning is the key to break the data barrier and to form data intelligence of pipeline network.Through big data analysis of natural gas pipeline network,the big data"ecology"of pipeline network shall be improved continuously,the machine learning method of knowledge in data fusion shall be deeply researched,and a cross-border interpretable and controllable big data analysis method system of pipeline network shall be established,so as to provide theoretical support for development of intelligent pipeline network technologies.
作者 苏怀 张劲军 SU Huai;ZHANG Jinjun(College of Mechanical and Transportation Engineering,China University of Petroleum(Beijing)//National Engineering Laboratory for Pipeline Safety//Beijing Key Laboratory of Urban Oil and Gas Distribution Technology)
出处 《油气储运》 CAS 北大核心 2020年第10期1081-1095,共15页 Oil & Gas Storage and Transportation
基金 国家自然科学基金青年项目“基于数据科学的复杂天然气管网系统状态演化机制分析方法研究”,51904316 中国石油大学(北京)校基金资助项目“天然气管网系统供气可靠性及其优化方法研究”,2462018YJRC038 中国石油大学(北京)科研基金资助项目“基于大数据的天然气管网智能运行与控制研究”,2462020YXZZ045。
关键词 天然气管网 大数据 分析 应用 方法论 natural gas pipeline network big data analysis application methodology
  • 相关文献

参考文献9

  • 1M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:539
  • 2王巨洪,张世斌,王新,李荣光,王婷.中俄东线智能管道数据可视化探索与实践[J].油气储运,2020,39(2):169-175. 被引量:42
  • 3颜庆龙,叶国清,华晶,纪海涛.智能工地在中俄东线天然气管道工程的实践[J].智能建筑,2018(9):65-68. 被引量:12
  • 4吴长春,左丽丽.关于中国智慧管道发展的认识与思考[J].油气储运,2020,39(4):361-370. 被引量:55
  • 5蔡永军,蒋红艳,王继方,王潇潇,李莉,陈国群,张海峰.智慧管道总体架构设计及关键技术[J].油气储运,2019,38(2):121-129. 被引量:66
  • 6姜昌亮.中俄东线天然气管道工程管理与技术创新[J].油气储运,2020,39(2):121-129. 被引量:99
  • 7李柏松,王学力,王巨洪.数字孪生体及其在智慧管网应用的可行性[J].油气储运,2018,37(10):1081-1087. 被引量:68
  • 8韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用,1999,16(2):153-157. 被引量:156
  • 9宫敬,徐波,张微波.中俄东线智能化工艺运行基础与实现的思考[J].油气储运,2020,39(2):130-139. 被引量:59

二级参考文献87

共引文献946

同被引文献236

引证文献20

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部