摘要
由于现在互联网的快速发展,各行各业面临着巨大的挑战。如何在互联网的巨大冲击下还能吸引更多的客户是企业最需要考虑的问题。本文主要讨论在大数据的大环境下,银行业是如何利用各种手段收集数据,建立自己的用户画像从而调整自己的营销策略。本文提供了一个改进的协同过滤算法——与时间相关的最近兴趣相似度计算方法,通过这个改进的协同过滤算法可以给银行的精准营销提供一个新的参考。
Nowadays with the rapid development of the Internet, all walks of life are facing great challenges. How to attract more customers under the huge impact of the Internet is the most important issue for enterprises to consider. This paper mainly discusses how the banking industry can use various means to collect data and build its own customer portraits to adjust its marketing strategy in the big data environment. This article provides an improved collaborative filtering algorithm--time-related similarity calculation method. This improved collaborative filtering algorithm can provide a new reference for the bank’s precision marketing.
作者
边玉宁
李业丽
曾庆涛
孙彦雄
BIAN Yuning;LI Yeli;ZENG Qingtao;SUN Yanxiong(College of Information Engineering,Beijing Institute of Graphic Communication,Beijing 102600,China)
出处
《北京印刷学院学报》
2020年第10期137-142,共6页
Journal of Beijing Institute of Graphic Communication
关键词
大数据
精准营销
用户画像
协同过滤
big data
precision marketing
user portraits
collaborative filtering