期刊文献+

基于深度学习的信源信道联合编码方法综述 被引量:1

A survey on deep learning based joint source-channel coding
下载PDF
导出
摘要 信息论的经典结果表明,信源信道分离编码是渐进最优的。但现代通信系统对时延、带宽等愈发敏感,分离设计对解码具有无限计算能力这一假设难以成立。带宽有限时,相对于信源信道联合编码,分离编码已被证明是次优的。传统的联合信源信道编码需要复杂的编码方案,相较之下,数据驱动的深度学习技术则带来了新的设计思路。适时地对相关研究成果进行总结,有助于进一步明确深度学习方法解决信源信道联合编码问题的方式,为研究新的研究方向提供依据。首先介绍了基于深度学习的信源压缩方案和端对端收发信机模型,随后分析不同信源类型下的两种联合编码设计思路,最后探讨了基于深度学习的信源信道联合编码的潜在问题和未来的工作方向。 Classical information theory shows that separate source-channel coding is asymptotically optimal over a point-to-point channel.As modern communication systems are becoming more sensitive to delays and bandwidth,it becomes difficult to adopt the assumption that such separate designs have unlimited computing power for encoding and decoding.Compared to joint source-channel coding,separate coding has proven to be sub-optimal when the bandwidth is limited.However,conventional joint source-channel coding schemes require complicated design.In contrast,data-driven deep learning brings new designing ideas into the paradigm.A summary of relevant research results was provided,which will help to clarify the way in which deep learning methods solve the joint source-channel coding problem and to provide an overviewof new research directions.Source compression schemes and end-to-end communication system models were firstly introduced,both based on deep learning,then two kinds of joint coding designs under different types of source,and potential problems of joint source-channel coding based on deep learning and possible future research directions were introduced.
作者 穆天杰 陈晓辉 汪逸云 马陆鹏 刘东 周晶 张文逸 MU Tianjie;CHEN Xiaohui;WANG Yiyun;MA Lupeng;LIU Dong;ZHOU Jing;ZHANG Wenyi(University of Science and Technology of China,Hefei 230026,China)
出处 《电信科学》 2020年第10期56-66,共11页 Telecommunications Science
基金 国家重点研发计划项目(No.2018YFA0701603)。
关键词 深度学习 图像/视频压缩 端到端收发信机 信源信道联合编码 deep learning image/video compression end-to-end transceiver joint source channel coding
  • 相关文献

参考文献1

二级参考文献2

共引文献37

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部