期刊文献+

基于大数据的账户风险监测模型研究

Research on the Model of Account Risk Monitoring Based on Big Data
下载PDF
导出
摘要 伴随着全面取消境内企业银行账户许可,由核准制改为备案制,在新形势下如何利用创新手段有效监管账户,打击非法账户和非法交易成为摆在监管部门面前的新课题。本文在分析了可疑账户和可疑交易特征的基础上,基于央行支付系统和账户系统属地大数据,提出了针对不同应用场景建立的三种账户风险监测模型,阐述了每种模型的优势和不足。本文的探讨为新形势下账户监管提供了新的视角和手段。 With the complete cancellation of the bank account license,the approval system has been changed to the filing system.In the new situation,how to use innovative means to effectively supervise the accounts and fight against illegal accounts and illegal transactions has become a new issue for the regulatory authorities.Based on the analysis of the characteristics of suspicious accounts and suspicious transactions,this paper proposes three kinds of account risk monitoring models for different application scenarios based on the big data of China national advanced payment system and account system,and expounds the advantages and disadvantages of each model.This paper provides a new perspective and means for account supervision in the new situation.
作者 周猛 ZHOU Meng
出处 《吉林金融研究》 2020年第8期27-30,共4页 Journal of Jilin Financial Research
关键词 支付系统 账户系统 大数据 china national advanced payment system account system big data
  • 相关文献

参考文献2

二级参考文献13

  • 1Wang Sunan, Yang Jiangang. A money laundering risk evaluation method based on decision tree[C]// International Conference on Machine Learning and Cybernetics, 2007: 283-286.
  • 2Zhu Tianqing. Suspicious financial transaction detection based on empirical mode decomposition method[C]//Proceedings of the 2006 IEEE Asia- Pacific Conference on Services Computing, 2006: 300-304.
  • 3Rahman A A. The impact of reporting suspicious transactions regime on banks.. Malaysian experience [J]. Journal of Money Laundering Control, 2013, 16(2) : 159-170.
  • 4Pramod V, Li Jinghua, Gao Ping. A framework for preventing money laundering in banks [ J ]. Information Management & Computer Security, 2012, 20(3), 170-183.
  • 5Cao Jie, Lu Hongke, Wang Weiwei. A novel five- category loan-risk evaluation model using multiclass LS-SVM by PSO [J]. International Journal of Information Technology & Decision Making, 2012, 11(4), 857-874.
  • 6Ling Yun, Cao Qiuyan, Zhang Hua. Credit scoring using multi-kernel support vector machine and chaos particle swarm optimization[J]. International Journal of Computational Intelligence and Applications, 2012, 11(3) : 1250019-1-1250019-13.
  • 7Karaa A, Krichene A. Credit-risk assessment using support vectors machine and multilayer neural network models: A comparative study case of a tunisian bank[J]. Accounting and Management Information Systems, 2012, 11(4), 587-620.
  • 8Cortes C, Vapnik V. Support-vector networks [J]. Machine Learning, 1995(20) :273-297.
  • 9Vapnik V. The nature of statistical learning theory [M]. NY: Springer-Verlag, 1995.
  • 10中国人民银行.金融机构大额交易和可疑交易报告管理办法[EB/OL].http://www.pbc.gov.cn,2006.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部