期刊文献+

小训练样本条件下的机载网络流量识别方法 被引量:1

Airborne Network Traffic Identification Method under Small Training Samples
下载PDF
导出
摘要 机载网络环境下,流量数据集获取成本高、难度大,且流量分布时间敏感度较高,导致基于机器学习的流量识别方法难以获得实际应用。针对该问题,提出了一种基于卷积神经网络的小流量样本条件下机载网络流量识别方法,首先基于源领域完备数据集实现卷积神经网络初始模型的预训练,然后在目标领域数据集上,通过基于层冻结的卷积神经网络微调学习算法实现卷积神经网络的重训练,从而构造基于特征迁移的卷积神经网络(FRT⁃CNN)模型实现流量样本的线上分类。通过在实际机载网络流量数据集上的实验结果表明,所提方法可以在流量训练样本有限的条件下保证流量识别准确性,且分类性能相比于现有小样本学习方法有显著提升。 Due to the high cost and difficulty of traffic data set acquisition and the high time sensitivity of traffic distribution,the machine learning⁃based traffic identification method is difficult to be applied in airborne network environment.Aiming at this problem,a method for airborne network traffic identification based on the convolutional neural network under small traffic samples is proposed.Firstly,the pre⁃training of the initial model for the convolu⁃tional neural network is implemented based on the complete data set in source domain,and then the retraining of the convolutional neural network is realized through the layer frozen based fine⁃tuning learning algorithm of convolu⁃tional neural network on the incomplete dataset in target domain,and the convolutional neural network model based feature representing transferring(FRT⁃CNN)is constructed to realize online traffic identification.The experiment re⁃sults on the actual airborne network traffic dataset show that the proposed method can guarantee the accuracy of traf⁃fic identification under limited traffic samples,and the classification performance is significantly improved comparing with the existing small⁃sample learning methods.
作者 吕娜 周家欣 陈卓 陈旿 LYU Na;ZHOU Jiaxin;CHEN Zhuo;CHEN Wu(School of Information and Navigation,PLA Air Force Engineering University,Xi′an 710077,China;School of Cybersecurity,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第5期1129-1138,共10页 Journal of Northwestern Polytechnical University
基金 陕西省重点研发计划(2017GY⁃069)资助。
关键词 流量识别 卷积神经网络 迁移学习 机载网络 traffic identification convolutional neural network transfer learning airborne network
  • 相关文献

参考文献5

二级参考文献40

  • 1陈立家,江昊,吴静,郭成城,徐武平,晏蒲柳.车用自组织网络传输控制研究[J].软件学报,2007,18(6):1477-1490. 被引量:46
  • 2Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 4Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 6Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 7Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 8Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 9Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
  • 10Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.

共引文献2017

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部