期刊文献+

一种基于神经网络和Bradley-Terry模型的围棋等级分模型

A GO RATING MODEL BASED ON NEURAL NETWORK AND BRADLEY-TERRY MODEL
下载PDF
导出
摘要 竞技类体育赛事和游戏等一般都依赖于等级分系统进行评价,现有等级分系统存在对局信息未得到充分利用问题。针对围棋对局数据的时间跨度大及包含让子棋局特点,基于经典成对数据比较模型(Bradley-Terry模型)构建神经网络等级分模型(NN-Rating)。通过历史衰减方法提高模型时效性,同时借鉴主场优势特性扩展模型处理让子棋局。在真实围棋比赛数据上的实验结果及其分析表明,NN-Rating模型有良好的客观性和稳定性,相比较Elo、Trueskill和Whole-History Rating(WHR)算法具有更高的预测准确性。 Competitive sports events and games generally rely on rating system,and existing rating system has problems such as insufficient use of the game information.In this paper,the neural network rating model(NN-Rating)is constructed based on the Bradley-Terry model of the classic paired data comparison model for the time span of Go game and the characteristics of Go that including handicap game data.We improved the timeliness of the model through historical decay method,and extended the model to make it possible to process handicap games.The experimental results and analysis on the real Go game data show that the NN-Rating model has good objectivity and stability,and has higher prediction accuracy than Elo,Trueskill and Whole-History Rating(WHR)algorithms.
作者 赵睿 赵银亮 Zhao Rui;Zhao Yinliang(School of Computer Science and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2020年第11期79-83,138,共6页 Computer Applications and Software
关键词 Bradley-Terry模型 神经网络模型 等级分系统 围棋 历史衰减 Bradley-Terry model Neural network model Rating system Game of go Historical decay
  • 相关文献

参考文献1

二级参考文献13

  • 1中国围棋竞赛规则(2002年版)[EB/OL].[2012—10—16].http://games.sports.cn/datebase/encyelopaedia/wq/2010—07—19/2046610_3.html.
  • 2Taeil Bai. The New Rating System of the Korea Baduk Association (EB/OL).[2012 - 11 - 12]. http://english. baduk. or. kr/sub03_04 -1. htm? menu = f13&divL =6.
  • 3Herbrich R, Minka T, Graepel T. TrueSkill (TM) : A Bayesian skill rating system[C] I lIn Advances in Neural Information Pro?cessing Systems 20. Scholkopf B, PlattJ, Hoffman T. Cambridge: MIT Press, 2007 :569 - 576.
  • 4Zhang Xinhua, Graepel T, Ralf Herbrich. Bayesian Online Learning for Multi - label and Multi - variate Performance Meas?ures[C] II Proceedings of the 13 th International Conference on Artificial Intelligence and Statistics (AIST ATS) , 2010. Yee Whye The, Mike Titterington. Brookline: Microtome Publishing, 2010:956 -963.
  • 5Graepel T, CandelaJ Q, Borchert T, Herbrich R. Web - scale Bayesian click - through rate prediction for sponsored search advertising in microsoft's bing search engine[C] IIProceedings of the 27th International Conference on Machine Learning IC?ML 2010.Johannes Furnkranz , ThorstenJoachims. Anderson: Omnipress , 2010: 13 - 20.
  • 6RANKINGS (EB/OL).[2012 -10 -15]. http://www.atpworldtour.comiRankings/Rankings - FAQ. aspx.
  • 7Elo A E. The new U. S. C. F. rating system[J]. Chess Life, 1961,16: 160 -161.
  • 8Elo A E. The Rating of Chess Players, Past and Present[M]. New York: Areo Publishing, 1978.
  • 9Clickman M E. A Comprehensive guide to chess ratings[J]. Amer. ChessJournal, 1995 (3) :59 - 102.
  • 10Minka T P. Expectation propagation for approximate Bayesian inference[CJ II Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence.John Breese, Daphne Koller. San Francisco: Morgan Kaufmann Publishers Inc. , 2001 : 362 -369.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部