期刊文献+

融合Fisher判别分析的多任务深度判别度量学习的化妆人脸验证方法 被引量:3

MAKEUP FACE VERIFICATION METHOD BASED ON MULTI-TASK DEEP DISCRIMINATIVE METRIC LEARNING WITH FISHER DISCRIMINANT ANALYSIS
下载PDF
导出
摘要 针对人脸化妆导致人脸验证方法性能降低的问题,提出一种融合Fisher判别分析的多任务深度判别度量学习模型(MT-DDML-FDA)。使用深度度量学习结构,通过共享一个网络层在多个任务之间学习共享的转换知识,来捕获不同任务的人脸图像之间的潜在识别信息;使用Fisher判别分析将类内相关矩阵和类间相关矩阵引入该模型,使每一个任务具有良好的距离度量。实验证明,MT-DDML-FDA在真实化妆人脸数据集上能够有效提升人脸验证的性能。 Face makeup can degrade the performance of face verification methods.To solve this problem,a Learning model of multi-task deep discriminative metric learning with Fisher discriminant analysis(MT-DDML-FDA)is proposed.It used deep discriminative metric learning structure to capture potential recognition information between different tasks by sharing a common network layer to learn projection knowledge among multiple tasks.Meanwhile,it introduced Fisher discriminant analysis,which used the intra-class correlation matrix and inter-class correlation matrix to show a good distance measurement for each task.Experiments show that MT-DDML-FDA can effectively improve the performance of face verification on real makeup face data sets.
作者 陆兵 Lu Bing(Department of Information Technology and Engineering,Changzhou Vocational Institute of Light Industry,Changzhou 213164,Jiangsu,China;Department of Information Science and Engineering,Changzhou University,Changzhou 213164,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2020年第11期112-121,共10页 Computer Applications and Software
基金 国家自然科学基金项目(61806026) 常州工业职业技术学院新一代信息技术团队资助项目(YB201813101005)。
关键词 人脸验证 多任务学习 FISHER判别分析 深度学习 Face verification Multi-task learning Fisher discriminant analysis Deep learning
  • 相关文献

参考文献1

二级参考文献88

  • 1Xing E P, Ng A Y, Jordan M I, Russell S. Distance metric learning with application to clustering with side- information. In: Proceedings of the 2003 Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2003. 521-528.
  • 2Goldberger J, Roweis S, Hinton G, Salakhutdinov R. Neigh- bourhood components analysis. In: Proceedings of the 2004.Advances in Neural Information Processing Systems. Van- couver, Canada: MIT Press, 2004. 513-520.
  • 3Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification. JournM of Ma- chine Learning Research, 2009, 10:207-244.
  • 4Xiang S M, Nie F P, Zhang C S. Learning a Mahalanobis dis- tance metric for data clustering and classification. Pattern Recognition, 2008, 41(12): 3600-3612.
  • 5Mensink T, Verbeek J, Perronnin F, Csurka G. Metric learn- ing for large scale image classification: generalizing to new classes at near-zero cost. In: Proceedings of the 12th Eu- ropean Conference on Computer Vision. Florence, Italy: IEEE. 2012. 488-501.
  • 6Feng Z Jin 1 Jain A. Large-scale image annotation by ef- ficient and robust kernel metric learning. In: Proceedings of the 2013 International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 1609-1616.
  • 7Wang X Y, Hua G, Han T X. Discriminative tracking by metric learning. In: Proceedings of the llth European Con- ference on Computer Vision. Heraklion, Greece: Springer, 2010. 200-214.
  • 8Chen J H, Zhao Z, Ye J P, Liu H. Nonlinear adaptive dis- tance metric learning for clustering. In: Proceedings of the 2007 International Conference on Knowledge Discovery and Data Mining. California, USA: ACM, 2007. 123-132.
  • 9Ye J P, Zhao Z, Liu H. Adaptive distance metric learning for clustering. In: Proceeding of the 2007 Computer Society Conference on Computer Vision and Pattern Recognition. Minnesota, USA: IEEE, 2007. 1-7.
  • 10Cinbis R G, Verbeek J, Schmid C. Unsupervised metric learning for face identification in TV video. In: Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1559-1566.

共引文献23

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部