期刊文献+

深度神经网络结合蚁群算法的躲避攻击多目标对抗方法 被引量:2

MULTI-TARGET COUNTERMEASURE METHOD OF AVOIDING ATTACK BASED ON DEEP NEURAL NETWORK AND ANT COLONY ALGORITHM
下载PDF
导出
摘要 针对深度神经网络在躲避攻击多目标对抗方法中输入的数据易导致机器误解码,提出一种深度神经网络结合蚁群算法的躲避攻击多目标对抗方法。设计一种与变换器和多个模型组成的体系结构,利用变换器生成一个多目标的对抗性样本,利用深度学习训练的分类器对输入值进行分类;引入蚁群算法,利用蚂蚁互相交流学习的正反馈原理保证算法的收敛性和寻优速度;融合两种算法的优势,实现躲避攻击的多目标对抗。实验结果表明,相比其他现有方法,该方法在躲避攻击多目标对抗方面更具优势,实现了100%的攻击成功率。 Aiming at the fact that the data input by deep neural network in the multi-target antagonistic method of evading attack can easily lead to machine misunderstanding codes,a new method of evading attack multi-target antagonistic method based on deep neural network and ant colony algorithm is proposed.An architecture composed of a converter and multiple models was designed.A multi-target antagonistic sample was generated by the converter,and the input value was classified by the classifier of deep learning training.Then,the ant colony algorithm was introduced to ensure the convergence and optimization speed of the algorithm.The advantages of the two algorithms were fused to realize the multi-target confrontation of evading attack.Experimental results show that,compared with other existing methods,the proposed method has more advantages in avoiding attack against multiple targets and achieves 100%attack success rate.
作者 魏焕新 张宏国 Wei Huanxin;Zhang Hongguo(College of Information Engineering,Hunan College of Electrical and Mechanical Technology,Changsha 410151,Hunan,China;Department of Software Engineering,Harbin University of Science and Technology,Harbin 150080,Heilongjiang,China)
出处 《计算机应用与软件》 北大核心 2020年第11期292-298,共7页 Computer Applications and Software
基金 国家自然科学基金项目(51375128) 湖南省教育厅科学研究项目(15C0490) 全国教育科学规划课题(EJA17450)。
关键词 深度神经网络 躲避攻击 对抗样本 机器学习 蚁群算法 多目标对抗 Deep neural network Evade attack Counter sample Machine learning Ant colony algorithm Multi-objective confrontation
  • 相关文献

参考文献10

二级参考文献80

  • 1谈江海,陈天麒.一种雷达干扰资源分配算法[J].电子对抗技术,2005,20(5):31-34. 被引量:13
  • 2刘非凡,赵军,吕碧波,徐波,于浩,夏迎炬.面向商务信息抽取的产品命名实体识别研究[J].中文信息学报,2006,20(1):7-13. 被引量:47
  • 3Kuo-Chi Kurt Lin, Steve Farr, Alex Sisti, et al. Dynamic situation assessment and prediction on controlling a swarm of UCAVs [C] // International Conference on Simulation and Multimedia in Engineering Education, and 3rd International Symposium on Collaborative Technologies and Systems, 2002 : 207 - 212.
  • 4Mahler Ronald P, Prasanth Ravi R. Technologies for unified collection and control of UCAVs[J]. Signal Processing, Sensor Fusion, and Target Recognition XI, 2002: 90-101.
  • 5钟友武,柳嘉润,申功璋.自主近距空战中敌机的战术动作识别方法[J].北京航空航天大学学报,2007,33(9):1056-1059. 被引量:13
  • 6郝红卫,蒋蓉蓉.基于最近邻规则的神经网络训练样本选择方法[J].自动化学报,2007,33(12):1247-1251. 被引量:37
  • 7Bengio Y, et al. Greedy Layer-Wise Training of Deep Networks [ C ]// NIPS ,2007.
  • 8Arel I,et al. Deep Machine Learning-A New Frontier in Artificial In- telligence Research [ J ]. Computational Intelligence Magazine , IEEE, 2010,5(1) :13 -18.
  • 9Hinton G E ,et al. A Fast Learning Algorithm for Deep Belief Nets[ J]. Neural Computation ,2006,18 : 1527 - 1554.
  • 10Pouhney C, et al. Efficient Learning of Sparse Representations with an Energy-Based Model[ M ]. Presented at the NIPS, New York ,2006.

共引文献265

同被引文献32

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部