期刊文献+

基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测 被引量:15

Fault Detection of Missing Split Pins in Swivel with Clevis in High-speed Railway Catenary Based on Deep Learning
下载PDF
导出
摘要 针对高速铁路接触网支撑装置中旋转双耳开口销钉缺失故障检测的问题,提出一种基于深度卷积神经网络和集成学习的故障检测方法。通过Faster R-CNN网络对旋转双耳整体进行精确定位;在整体定位结果的基础上,进一步完成对开口销钉的精确定位,最大程度上降低背景对故障检测的干扰;通过多个深度卷积神经网络提取开口销钉图像的多种特征,最终由多个线性SVM构成的集成分类器实现开口销钉缺失故障检测。实验结果表明:本方法能在复杂的接触网支撑装置图像中实现旋转双耳开口销钉的精确定位,并且在销钉的缺失故障检测中表现出较高的可靠性。 A fault detection method based on deep convolution neural network and ensemble learning was proposed to detect the fault of missing split pins of swivel with clevis,which is an important part of high-speed railway catenary support system.First,the swivel with clevis was precisely located by the Faster R-CNN network.Then,based on the overall locating results,the precise location of the split pins was further accomplished,to minimize the interference of the background to fault detection.Finally,a variety of features of split pins image were extracted through a number of deep neural networks,and the split pins missing fault detection was achieved by the ensemble classifier,composed of a number of linear SVM classifiers.The experimental results show that the proposed method can realize the precise location of the swivel with clevis and the split pins in the complex catenary support system image,and can achieve the split pins missing fault detection with high reliability.
作者 康高强 高仕斌 于龙 陈健雄 KANG Gaoqiang;GAO Shibin;YU Long;CHEN Jianxiong(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《铁道学报》 EI CAS CSCD 北大核心 2020年第10期45-51,共7页 Journal of the China Railway Society
基金 国家自然科学基金(U1734202)。
关键词 旋转双耳 开口销钉缺失检测 深度卷积神经网络 集成学习 swivel with clevis split pins missing fault detection deep convolution neural network ensemble learning
  • 相关文献

参考文献10

二级参考文献73

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2吴培景,陈光梦.一种改进的SSDA图像匹配算法[J].计算机工程与应用,2005,41(33):76-78. 被引量:30
  • 3铁道部运输局.时速300-350公里高速铁路牵引供电系统总体技术方案[R],2007.
  • 4LOW[D G. Object Recognition from Local Scale-invariant FeaturesEC2//Proceedings of the 7th IEEE International Conference on Computer Vision, 1999 : 1150-1157.
  • 5LOW[D G. Distinctive Image Features From Scale-invari- ant Keypoints[J2. International Journal of Computer Vi- sion,2004,60(2) :91 110.
  • 6MAHOMOUD F, AZZAM R M. Optical monitor for con-tamination on HV insulator surfaces [J]. IEEE Trans onDielectrics and Electrical Insulation, 1997 ,4(1) :33-38.
  • 7AHMAD A S,GHOSH P S,AHMED S S, et al. Assess-ment of ESDD on high-voltage insulators using artificialneural network [J]. Electric Power Systems Research,2004,72(1) :131-136.
  • 8HARRIS C,STEPHENS M J. A combined comer andedge detector [C]. The 4th Alvey Vision Conference,1998:179-186.
  • 9BARNEA D I,SILVERMAN H. F. A class of algorithmsfor fast digital image registration [J]. IEEE Transactionson Computers, 1972,21(2) : 179-186.
  • 10TANG J,PELI E, ACTION S. Image enhancement using acontrast measure in the compressed domain [J]. IEEESignal Processing Letters,2003 ,10(10) :289-292.

共引文献240

同被引文献96

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部