期刊文献+

Armendariz半环的一些性质

Properties of Armendariz Semi-ring
下载PDF
导出
摘要 在Armendariz环概念的基础上,定义了Armendariz半环,并将Anderson和Camillo提出的Armendariz环的一些性质推广到半环上;证明了在Armendariz半环R中,当n个一元多项式乘积为零时,其对应的系数乘积为零;其次,证明了R是Armendariz半环当且仅当R[x]是Armendariz半环;同时,给出了n个多元多项式乘积为零,其对应的系数乘积为零的等价条件;进一步证明了,当n≥2时,若R是约化半环,则R[x](x^n)为Armendariz半环。 Based on the concept of Armendariz rings,Armendariz semiring is defined,and some properties of Armendariz ring proposed by Anderson and Camillo are extended to semi-ring.It is proved that in the Armendariz-R,when the product of n unary polynomials is zero,their corresponding coefficient product is zero.Secondly,it is proved that R is an Armendariz semi-ring if and only if R[x]is an Armendariz semi-ring.At the same time,the equivalent condition is given that the product of n multivariate polynomials is zero and the product of their corresponding coefficients is zero.It is further proved that when n≥2,if R is a reduced semi-ring,then R[x](x^n)is an Armendariz semi-ring.
作者 卓远帆 谷勤勤 ZHUO Yuan-fan;GU Qin-qin(School of Mathematics and Physics,Anhui University of Technology,Maanshan 243032,China)
出处 《南通职业大学学报》 2020年第3期62-66,共5页 Journal of Nantong Vocational University
关键词 多项式半环 零因子 交换半环 Armendariz半环 polynomial semi-ring zero divisor commutative semi-ring Armendariz semi-ring
  • 相关文献

参考文献2

二级参考文献30

  • 1MCCOY N H. Remarks on divisors of zero [ J ]. Amer, Math. Monthly, 1942, 49 : 286 - 295.
  • 2REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Proc. Japan Acad. Ser. A Math. Sci., 1997, 73: 14- 17.
  • 3NIELSEN P P. Semi - commutativity and the McCoy condition [J]. J. Algebra, 2006, 298: 134- 141.
  • 4张禾瑞.近世代数基础(第1版)[M].北京:高等教育出版社,1978:86-88.
  • 5LEI Z. CHEN Jian - long, YING Zhi - ling. A question of McCoy rings [ J ]. Bull. Austral. Math. Soc, 2007, 76 : 137 - 141.
  • 6YING Z L, CHENG J L, LEI Z. Extension of McCoy ring [J]. Northeast Math. J, 2008, 24 (1): 85-94.
  • 7[1]Howie J M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995
  • 8[2]Petrich M, Reilly N R. Completely Regular Semigroups. New York: Wiley, 1999
  • 9[3]Pastijn F. Idempotent distributive semirings II. Semigroup Forum, 1983, 26:151~166
  • 10[5]Pastijn F, Romanowska A. Idempotent distributive semirings I. Acta Sci Math, 1982, 44:239~253

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部