期刊文献+

On Well-Posedness of 2D Dissipative Quasi-Geostrophic Equation in Critical Mixed Norm Lebesgue Spaces

原文传递
导出
摘要 We establish local and global well-posedness of the 2D dissipative quasigeostrophic equation in critical mixed norm Lebesgue spaces.The result demonstrates the persistence of the anisotropic behavior of the initial data under the evolution of the 2D dissipative quasi-geostrophic equation.The phenomenon is a priori nontrivial due to the nonlocal structure of the equation.Our approach is based on Kato’s method using Picard’s interation,which can be apdated to the multi-dimensional case and other nonlinear non-local equations.We develop time decay estimates for solutions of fractional heat equation in mixed norm Lebesgue spaces that could be useful for other problems.
出处 《Analysis in Theory and Applications》 CSCD 2020年第2期111-127,共17页 分析理论与应用(英文刊)
基金 supported by the Simons Foundation,grant#354889。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部