期刊文献+

基于风速分频和权值匹配的RBF超短期风电功率预测方法 被引量:5

RBF ultra short term wind power forecasting method based on wind speed frequency division and weight matching
下载PDF
导出
摘要 为了提高风电功率超短期预测的准确率,文章提出了一种基于风速分频特征和权值匹配的RBF超短期风电功率预测方法。该方法的总体结构包括风速分频特征的提取、风速区间的划分、径向基神经网络的训练、分频最优权值决策、仿真计算和误差分析。与现有的仅考虑历史风电功率数据的方法相比,该方法能够跟踪未来的功率趋势,物理意义清晰,并考虑了风速不同频率特征对于功率的影响。算例结果表明,基于风速分频特征和权值分配的RBF超短期风电功率预测方法的预测精度较高,预测结果有效,具有较强的实用性。 In order to improve the accuracy of ultra short term wind power prediction,the paper develops a radial basis function(RBF)ultra short term wind power prediction method based on wind speed frequency division feature and weight matching.The overall structure of the method includes the extraction of wind speed frequency division feature,division of wind speed interval,training of RBF neural network,decision-making of optimal weight for frequency division,simulation of wind power prediction and analysis of associated error.Compared with the conventional prediction methods which considers historic wind power measurements only,the RBF method proposed here can not only capture the future power trend with a clear physical significance,but also take into account the influences that different frequency characteristics of wind speed have on the power.The results show that the RBF ultra short term wind power forecasting method based on the characteristics of wind speed frequency division and weight distribution has a higher prediction accuracy than conventional prediction methods,offering effective prediction results and strong practicability.
作者 杨茂 董昊 Yang Mao;Dong Hao(Key Laboratory of Modern Power System Simulation Control and Green Power New Technology Ministry of Education(Northeast Electric Power University),Jilin 132012,China)
出处 《可再生能源》 CAS 北大核心 2020年第11期1483-1488,共6页 Renewable Energy Resources
基金 国家重点研发计划项目(2018YFB0904200)。
关键词 超短期功率预测 风速分频 Yalmip-Cplex权值优化 RBF神经网络 ultra short term power prediction wind speed frequency division Yalmip-Cplex weight optimization RBF neural network
  • 相关文献

参考文献7

二级参考文献79

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2伍军云,张丽萍,洪胜华.粒计算及其在数据挖掘中的应用[J].科技广场,2005(6):43-45. 被引量:1
  • 3Alexiadi S M, Dokopoulos P, Sahsamanoglou H. Shortterm forecasting of wind speed and related electrical power [J]. Solar Energy, 1998, 63(1): 61-68.
  • 4Bossanyi E A. Short-term wind prediction using Kalman filters [J].Wind Engineering, 1985, 9(1): 1-8.
  • 5Kamal L, Jafri Y Z. Time series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[J]. Solar Energy, 1997, 61(1): 23-32.
  • 6Li Shuhui. Wind power prediction using recurrent multilayer perception neural networks[C].//Proceedings of IEEE Power Engineering Society General Meeting, Toronto, Ontario Canada, 2003: 2325-2330.
  • 7Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.
  • 8Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S. Wind-speed and power forecasting based on spatial correlation models[J]. IEEE Trans on Energy Conversion, 1999, 14(3): 836-842.
  • 9曹娜,赵海翔,任普春,戴慧珠.风电场动态分析中风速模型的建立及应用[J].中国电机工程学报,2007,27(36):68-72. 被引量:64
  • 10吴兴华,周晖,黄梅.基于模式识别的风电场风速和发电功率预测[J].继电器,2008,36(1):27-32. 被引量:60

共引文献151

同被引文献80

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部