期刊文献+

深度置信网络算法反演Landsat 8 OLI气溶胶光学厚度 被引量:9

Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network
原文传递
导出
摘要 传统的气溶胶遥感反演算法在地表反射率较低、结构较为均一的海洋及浓密植被等区域的气溶胶反演可以达到较高的精度,而在城市、矿区等高亮度、高异质性区域的气溶胶反演中仍面临较大的挑战。当地表反射率较高时,卫星传感器获取的对气溶胶具有标识性的信息不足,导致了气溶胶反演的困难。为更大程度地挖掘卫星信号中对气溶胶具有标识性的信息,本文提出使用深度学习技术的气溶胶遥感反演算法,用于Landsat 8 OLI传感器的气溶胶反演。选择全球不同区域的AERONET站点气溶胶实测数据以及对应区域的Landsat 8 OLI传感器的观测几何角度和表观反射率数据,根据合理的时空匹配原则构建样本数据。选择深度置信网络,在合理设置训练批次和训练次数的基础上对网络进行训练和测试,生成关于卫星传感器数据的气溶胶光学厚度拟合网络模型,实现气溶胶遥感反演。使用独立的AERONET站点气溶胶实测数据对反演结果进行了验证,结果表明:该方法可反演不同地表类型区域连续空间覆盖的气溶胶光学厚度,且达到了较高的精度(R=0.8745,RMSE=0.0391,MAE=0.0616,EE=87.94%)。与传统的方法相比,本方法基于单时相卫星遥感数据即可实现气溶胶的高精度反演,简化了气溶胶反演的步骤,提高了气溶胶反演的稳定性和时空适应性。 Traditional methods of aerosol remote sensing inversion can achieve high accuracy in areas with low surface reflectance,homogeneous structures, and dense vegetation while facing serious challenges in highly bright and spatially heterogeneous areas, such as cities and mining areas. High land surface reflectance causes insufficient aerosol information acquired by sensors that can lead to difficulties in aerosol inversion. A remote sensing inversion method of Aerosol Optical Depth(AOD) using deep learning algorithm is proposed in this study to extract aerosol identification information from satellite signals further and apply it to Landsat 8 OLI data. Aerosol-measured data of Aerosol Robotic Network(AERONET) sites in different regions of the world and the corresponding geometric angle and apparent reflectance of the Landsat 8 OLI data are selected to construct sample data sets according to the reasonable space-time matching method.The Deep Belief Network(DBN) is applied to implement the proposed method. The network is trained and tested on the basis of the reasonable setting of training batches and times. An AOD fitted network model on satellite remote sensing information is then generated to achieve aerosol inversion. Inversions are verified using independent AERONET-measured data. The verification showed that the proposed method can realize AOD inversion with continuous spatial coverage over different surface types and high accuracy(R = 0.8745, RMSE =0.0391, MAE = 0.0616, and EE = 87.94%). Compared with traditional approaches, the proposed method can achieve high-accuracy aerosol inversions using only single-phase satellite remote sensing data, simplify the steps of aerosol inversion, and improve the stability and time–space adaptability of the results.
作者 贾臣 孙林 陈允芳 张熙空 王伟燕 王永吉 JIA Chen;SUN Lin;CHEN Yunfang;ZHANG Xikong;WANG Weiyan;WANG Yongji(Geomatics College,Shandong University of Science and Technology,Shandong 266590,China)
出处 《遥感学报》 EI CSCD 北大核心 2020年第10期1180-1192,共13页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:41771408) 山东省自然科学基金(编号:ZR201702210379) 国防科工局十三五民用航天技术预先研究项目。
关键词 遥感 气溶胶光学厚度 遥感反演 Landsat 8 OLI 深度学习 深度置信网络 remote sensing aerosol optical depth remote sensing inversion Landsat 8 OLI deep learning Deep Belief Network
  • 相关文献

参考文献4

二级参考文献31

  • 1怀红燕,李正强,陈良富,王中挺,顾行发.基于地基偏振观测研究北京城区北部大气气溶胶特性变化[J].遥感学报,2008,12(3):490-498. 被引量:10
  • 2SUN Lin1,2,SUN ChangKui1,LIU QinHuo2 & ZHONG Bo2 1Geomatics College,Shandong University of Science and Technology,Qingdao 266510,China,2State Key Laboratory of Remote Sensing Science,Chinese Academy of Sciences,Beijing 100101,China.Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data[J].Science China Earth Sciences,2010,53(S1):74-80. 被引量:14
  • 3贺千山,毛节泰.微脉冲激光雷达及其应用研究进展[J].气象科技,2004,32(4):219-224. 被引量:37
  • 4夏祥鳌,王普才,陈洪滨,Philippe Gouloub,章文星.中国北方地区春季气溶胶光学特性地基遥感研究[J].遥感学报,2005,9(4):429-437. 被引量:26
  • 5Berico M, Luciani A, Formignani M. Atmospheric Aerosol in Urban Area-measurements of TSP and PM10 Standards and Pulmonary Deposition Assessments[ J]. Atmospheric Enviroment,1997, 31:3659-3665.
  • 6Holben B N, Eck T F, Slutsker I, et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization[J]. Remote Sensing of the Environment, 1998,66(1): 1-16.
  • 7Charlson R J, Schwartz S E, Hales J, et al. Climate Forcing by Anthropogenic Aerosols[J]. Science, 1992, 255: 423-430.
  • 8King M D, Kaufman Y J , Tanre D, et al. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future[ J]. Bulletin of the American Meteorological Society, 1999, 80 :2229-2259.
  • 9Tones O, Bhartia P K, Herman J R, et al. Derivation of Aerosol Properties from Satellite Measurements of Backscattered Ultraviolet Radiation: Theoretical Basis [ J]. Journal of Geophysical Research, 1998, 103 : 17099-17110.
  • 10Deschamps P Y, Breon F M, Leroy M, et al. The POLDER Mission: Instrument Characteristics and Scientific Objectives[ J ]. IEEE Transaction on Geoscience and Remote Sensing,1994, 32: 598-615.

共引文献85

同被引文献129

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部