摘要
针对传统溴化锂吸收式制冷系统中发生器的发生过程效率过低的问题,从提高发生效率的角度,提出一种超声波雾化溴化锂溶液来增大气液接触面积的新型发生器。基于能量与质量守恒方程,构建了超声波雾化溴化锂溶液的数学模型,探讨了不同影响因素对新型发生器内发生效率等重要参数的影响。比较分析了新型发生器与传统发生器在吸收制冷系统中的制冷量和制冷系数,理论上验证了该技术应用的可行性。研究结果表明:超声波雾化技术应用于发生器,在消耗微小能耗的情况下可获得更高的系统能效。所给定工况下,雾化液滴直径为43.22μm,雾化高度为0.63 cm,发生器内传质系数增加率可以达到4.75%;新型发生器的吸收制冷系统的制冷量和制冷系数分别较传统发生器提高了33.21%和31.33%。
Focusing on the lower efficiency of conventional generation process in the LiBr absorption refrigeration system,a novel generator was proposed by ultrasonic atomization LiBr aqueous solution to improve the contact area between solution and water vapor.In this paper,based on the conservation of energy and mass,a mathematical model of ultrasonic atomization for generating process enhancement of LiBr aqueous solution was established,and the effect of different factors on the generator efficiency and other important parameters of the proposed generator were discussed.Comparative analysis of the cooling capacity and coefficient of performance(COP)between the novel generator and conventional generator in the LiBr absorption refrigeration system was conducted.It proved the feasibility of ultrasonic atomization application by the theoretical method.The result indicates that the application of ultrasonic atomization technology in the generator can obtain higher energy efficiency at low energy consumption.Under the standard operating conditions,the diameter of atomized droplets is 43.22μm,the atomization height is 0.63 cm,and the increase rate of mass transfer coefficient in the generator can reach 4.75%;the cooling capacity and COP of single-effect absorption refrigeration system of the proposed generator are 33.21%and 31.33%higher than of the conventional generator,respectively.
作者
候召宁
王林
闫晓娜
Hou Zhaoning;Wang Lin;Yan Xiaona(Institute of Refrigeration and Air Conditioning,Henan University of Science and Technology,Luoyang 471023,China;School of Landscape and Architecture,Zhejiang Agriculture and Forestry University,Hangzhou 311300,China)
出处
《低温与超导》
CAS
北大核心
2020年第9期60-67,共8页
Cryogenics and Superconductivity
基金
国家自然科学基金(51706060)
河南省高等学校供热空调重点学科开放实验室研究基金(2017HAC104)资助。
关键词
空化效应
吸收制冷
超声雾化
溴化锂溶液
发生器
Cavitation effect
Absorption refrigeration
Ultrasonic atomization
LiBr aqueous solution
Generator