摘要
为了实现对具有强非线性压电定位台的精确位置跟踪,提出了一种基于径向基函数(RBF)神经网络和非奇异快速终端滑模面的自适应控制方法。对压电定位台进行了自适应控制建模,设计了非奇异快速终端滑模控制器。结合RBF神经网络实现了控制器的改进,提出了RBF非奇异快速终端滑模控制器及其参数更新规律,采用李雅普诺夫理论进行了稳定性证明。仿真结果表明:非奇异快速终端滑模控制器能够实现对时变正弦信号的有效跟踪,其平均误差为0.07μm,均方根误差为0.021μm;当采用RBF非奇异快速终端滑模控制器时,因神经网络的逼近作用,在相同时间内其平均误差为0.06μm,均方根误差为0.017μm。
In order to realize the precise position tracking for the nonlinear piezoelectric positioning platform,an adaptive control method based on radial basis function(RBF)neural network and non-singular fast terminal sliding surface was proposed.The adaptive modeling was carried out for the piezoelectric positioning platform,and the non-singular fast terminal sliding mode controller was designed.The controller performance was augmented by the RBF neural network,and the RBF non-singular fast terminal sliding mode controller and its parameter updating rule were proposed.The stability was proved based on the Lyapunov theory.The simulation results show that the non-singular fast terminal sliding mode controller can realize effective tracking for time-varying sinusoidal signals.The average error is 0.07μm,and the root mean square error is 0.021μm.By using RBF non-singular fast terminal sliding mode controller,the average error is 0.06μm and the root mean square error is 0.017μm within the same time due to the approximation effect of the neural network.
作者
陈群
杨宗霄
付主木
CHEN Qun;YANG Zongxiao;FU Zhumu(Information Engineering School,Henan University of Science&Technology,Luoyang 471023,China;Henan Engineering Laboratory of Wind Power Systems,Henan University of Science&Technology,Luoyang 471023,China)
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2021年第1期20-26,I0002,共8页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(71071078
61473115)。
关键词
压电定位台
RBF神经网络
跟踪控制
非奇异快速终端滑模
piezoelectric positioning platform
RBF neural network
tracking control
nonsingular fast terminal sliding mode