期刊文献+

基于多视图架构深度神经网络的图像威胁识别 被引量:2

Image Threat Recognition Based on Multiple View Architecture Deep Neural Network
下载PDF
导出
摘要 由于藏匿物体的大小、形状和位置未知,且样本类别不均衡,常用的深度学习方法存在误报率较高的问题。为此,构建一种基于多视图架构的深度卷积神经网络模型。通过残差连接卷积神经网络对特征进行提取,使用基于稠密连接的长短期记忆注意力模型模拟人类多角度观察,以强化威胁信息表达,并基于焦点损失函数优化网络,从而构成端到端的架构。在HD-AIT毫米波人体威胁扫描数据集上的测试结果表明,相比其他基线模型,该模型的准确率和召回率分别可达到0.997、0.999。 When applied to security checks,common deep learning methods have to address the high false alarm rate caused by the unknown size,shape and location of hidden objects as well as unbalanced sample categories.To deal with the problem,this paper proposes a deep convolutional neural network model based on multiple view architecture.The model uses convolutional neural networks with residual connections to extract features.Then a Long Short Term Memory(LSTM)attention model based on dense connections is used to simulate the process of human observations from multiple perspectives to enhance the expression of threat-related information.At the same time,the network is optimized based on the focus loss function to form an end-to-end framework.The experimental results on HD-AIT millimeter-wave scaned human body threating dataset show that the proposed model increases the accuracy to 0.997 and recall rate to 0.999 compared with other baseline models.
作者 叶晴昊 涂岱键 毕奇 秦飞巍 葛瑞泉 白静 YE Qinghao;TU Daijian;BI Qi;QIN Feiwei;GE Ruiquan;BAI Jing(School of Computer Science,Hangzhou Dianzi University,Hangzhou 310018,China;School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第11期261-266,共6页 Computer Engineering
基金 国家自然科学基金(61702146,61762003,61972121) 国家级大学生创新创业训练计划项目(201810336023) 浙江省认知医疗工程技术研究中心开放课题(2018KFJJ05)。
关键词 威胁识别 毫米波图像 深度学习 图像识别 注意力机制 threat recognition millimeter wave image deep learning image recognition attention mechanism
  • 相关文献

参考文献3

二级参考文献40

  • 1Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimension entropy [J]. Computer Vision, Graphics and Image Processing, 1989, 47( 1 ): 22-32.
  • 2Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [ J ]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
  • 3Kennedy J, Eberhart R C, Particle swarm optimization[ C ], Proceedings of the IEEE International Conference on Neural Networks, 1995, 1942-1948.
  • 4Kennedy J, Eberhart R C, Shi Y, Swarm Intelligence [ M ],San Francisco: Morgan Kaufmann Publishers, 2001.
  • 5Davis L. Handbook of Genetic Algorithm [ M ]. New York:van Nostrand, 1991.
  • 6Haralick R M, Shapiro L G. Image segmentation techniques [J], Comput. Vision Graphics Image Process, 1985,29:100-132.
  • 7Hosein Mohimani, Massoud Babaie - zadeh, Christian Jutten. A fast approach for overcomplete sparse decomposition based on smoothed 10 -norm [ J]. IEEE Trans. Signal Process, 2009, 57 (1): 289.
  • 8Emmanuel Candes, Michael Wakin. An introduction to compressive sampling [ J]. IEEE Signal Processing Magazine, 2008, 25 (2) : 21.
  • 9I Daubechies, M Defrise, and C D Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Comm Pure Appl Math, 2004, 57 (2) : 413.
  • 10Amir Beck, Marc Teboulle. A fast iterative shrinkage -thresholding algorithm for linear inverse problems [ J]. hnaging Sciences, 2009, 2 ( 1 ) : 183.

共引文献36

同被引文献13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部