期刊文献+

Banach空间的U凸系数

U-Convex Coefficient of Banach Space
下载PDF
导出
摘要 空间几何常数是空间几何性质的量化,从几何性质的研究到几何常数的计算是从定性到定量的推进。首先引入了一个新的几何常数U凸系数,并研究了它与一致非方和正规结构等几何性质之间的关系,并且通过研究它与常数R(X)的关系,得到Banach空间X弱接近一致光滑,且具有不动点性质。其次利用它与弱正交系数之间的关系给出了Banach空间具有正规结构的充分条件。最后给出了U凸模在l_p序列空间的计算。 The spatial geometric constant is the quantification of the geometrical properties of space. From the study of geometric properties to the calculation of geometric constants from qualitative to quantitative advancement. Firstly, this paper introduces a new geometric constant U-convex coefficient. Studying its relationship with geometric properties such as uniform non-square and regular structures and by studying its relationship with constants, the Banach space is weakly close to uniform smooth and has fixed point properties. Secondly, Using the relationship between it and weak orthogonal coefficients gives a sufficient condition for Banach spaces to have a regular structure. Finally, the calculation of the convex model in the sequence space is given.
作者 王静 崔云安 WANG Jing;CUI Yun-an(School of Applied Sciences,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2020年第5期158-163,共6页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11871181)。
关键词 U凸系数 BANACH空间 一致非方 正规结构 弱正交系数 Garcia-Falset系数 不动点性质 U-convex coefficient Banach space uniform nonsquare normal structure weak orthogonal coefficient Garcia-Falset coefficient fixed point properties
  • 相关文献

参考文献10

二级参考文献57

  • 1左红亮,杨敏.Banach空间的几何常数与一致正规结构[J].河南师范大学学报(自然科学版),2011,39(3):16-18. 被引量:2
  • 2高继.A New Class of Banach Spaces with Uniform Normal Structure[J].Northeastern Mathematical Journal,2001,17(1):103-110. 被引量:6
  • 3吴从圻,王廷辅,陈述涛,等.Orlicz空间几何理论[M].哈尔滨:哈尔滨工业大学出版社,1986.
  • 4Brodskii M S, Mil'man D P. On the center of a convex set. (Russian) Doklady Akad Nauk SSSR (N.S.), 1948, 59:837-840.
  • 5Clarkson, James A. Uniformly convex spaces. Trans Amer Math Soc, 1936, 40(3): 396-414.
  • 6Day, Mahlon M. Normed Linear Spaces. 3rd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. New York, Heidelberg: Springer-Verlag, 1973.
  • 7Gao Ji. Normal structure and modulus of U-convexity in Banach spuces//Rakosnik J, ed. Function Spaces, Differential Operators and Nonlinear Analysis (Paseky nad Jizerou, 1995). Prague: Prometheus, 1996: 195-199.
  • 8Gurarii V I. Differential properties of the convexity moduli of Banach spaces. (Russian) Mat Issled, 1967, 2:141-148.
  • 9Khamsi, Mohamed A. Uniform smoothness implies super-normal structure property. Nonlinear Anal, 1992, 19(11): 1063-1069.
  • 10Kirk W A. A fixed point theorem for mappings which do not increase distances. Amer Math Monthly, 1965, 72:1004-1006.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部