期刊文献+

抽象空间中Hadamard分数阶微分方程奇异边值问题正解的存在性

Existence of positive solutions for singular boundary value problems of Hadamard fractional differential equations in abstract space
原文传递
导出
摘要 研究了Banach空间中奇异边值问题正解的存在性。通过构造一个特殊的锥,利用严格集压缩算子的不动点指数理论,建立了该边值问题的近似问题至少有两个正解的存在性。然后借助Ascoli-Arzela定理,利用近似问题解序列的相对紧性,得到边值问题至少有两个正解的充分条件。 The existence of positive solutions of singular boundary value problems in Banach space is investigated.By constructing a new cone and using the fixed point index theory of strict set compression operator,it is established that there are at least two positive solutions for the corresponding approximation of the boundary value problem.Then,using Ascoli-Arzela theorem and the relative compactness of the sequence of solutions,a sufficient condition is obtained for the existence of multiple positive solutions to boundary value problem.
作者 孙妍妍 刘衍胜 SUN Yan-yan;LIU Yan-sheng(School of Mathematics and Statistics,Shandong Normal University,Jinan 250014,Shandong,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第10期95-103,共9页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11671237)。
关键词 Hadamard分数阶导数 奇异边值问题 Hadamard-type fractional derivative cone singular boundary value problem
  • 相关文献

参考文献2

二级参考文献20

  • 1Guo Dajun, Lakshmikantham V, Liu Xinzhi. Nonlinear Integral Equations in Abstract Spaces[M], Dordrecht: Kluwer Academic Publishers, 1996.
  • 2Lan K, Webb J L. Positive solutions of semilinear differential equations with singularities[J]. Journal of Differential Equations, 1998, 148(2): 407-421.
  • 3Erbe L H, Wang H. On the existence of positive solutions of ordinary differential equations[J], Proceedings of the American Mathematical Society, 1994, 120(3): 743-748.
  • 4Agarwal R P, O'Regan D. Second-order boundary value problems of singular type[J]. J Math Anal Appl, 1998. 226:414-430.
  • 5Kass M, Witkin A, Terzopoulos D. Snakes: active cont- our models[J]. International Journal of Computer Vision,1988, 1(4): 321-331.
  • 6Pu Yifei, Yuan Xiao, Liao Ke, et al. Five numerical al- go-rithms of fractional calculus applied in modern signal analyzing and processing[J ]. Journal of Sichuan Universi- ty, 2005, 37(5): 118-124.
  • 7Mbode B, Montseny G. Boundary fractional derivative control of the wave equation[J ]. IEEE Transactions on Automatic Control, 1995, 40(2): 378-382.
  • 8Torvik J, Bagley R L. On the appearance of the fraction- al derivative in the behavior of real materials[J ]. Trans- actionals of the ASME, 1984, 51: 294-298.
  • 9Bai Zhangbing, Qiu Tingting. Existence of positive solu- tion for singular fractional differential equation[J]. Appl. Math. Comput., 2009, 215: 2761-2767.
  • 10Xu Xiaojie, Jiang Daqing, Yuan Chengjun. Multiple pos- itive solutions for the boundary value problem of a nonlin- ear fractional differential equation[J ]. Nonlinear Analys- is, 2009, 71: 4676-4688.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部