期刊文献+

基于模型参数在线辨识技术的SOC估算方法 被引量:5

Model Parameter Online Identification Based SOC Estimation Method
下载PDF
导出
摘要 针对遗传算法(genetic algorithm,GA)存在收敛速度慢、易陷入局部最优以及难以实现在线应用的问题,面向如动力电池等效电路模型一类非线性较强、实时性要求高的模型辨识问题,提出一种能够快速缩小搜索空间,且有效避免陷入局部最优的在线快速搜索的优化辨识框架,实现电动汽车动力电池等效电路模型参数在线快速辨识,扩展全局搜索优化算法的应用范围.进一步,将此算法应用于电池剩余荷电状态(SOC)估算问题,提出基于改进GA参数辨识技术的无迹粒子滤波SOC估算方法(IGA-UPF).并将此SOC估算方法与基于最小二乘参数辨识技术的无迹粒子滤波的SOC估算算法(LS-UPF)作比较,结果验证了本文提出的在线快速参数辨识框架具有更好的模型参数辨识精度. In view of the problems that genetic algorithm(GA)has slow convergence speed,be easy to fall into local optimum and difficult to realize online application,and that the identification background of power battery equivalent circuit model is with strong nonlinearity and high real-time requirements.An optimized identification framework is proposed that can quickly reduce the search space and effectively avoid falling into the local optimum for online fast search,thus realizing the online fast identification of the parameters of the equivalent circuit model of the electric vehicle power battery,and expanding the application range of the global search optimization algorithm.Further,the proposed algorithm is applied to the state of charge(SOC)estimation,based on the improved GA unscented partical filter(IGA-UPF)is proposed.The SOC estimation method is compared with the SOC estimation method based on least square-unscented partical filter(LS-UPF),which proves that the online fast parameter identification framework proposed has better model parameter identification accuracy.
作者 刘芳 马杰 苏卫星 何茂伟 LIU Fang;MA Jie;SU Wei-xing;HE Mao-wei(School of Computer Science and Technology,Tiangong University,Tianjin 300387,China;State Key Laboratory of Process Automation in Mining&Metallurgy,Beijing 100160,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第11期1543-1549,共7页 Journal of Northeastern University(Natural Science)
基金 国家重点研发计划项目(2017YFB1103003) 国家自然科学基金青年基金资助项目(61802280,61806143,61772365,41772123) 采矿冶金过程自动化国家重点实验室/北京矿冶过程自动化重点实验室研究基金资助项目(BGRIMM-KZSKL-2019-08) 天津市自然科学基金资助项目(18JCQNJC77200) 天津市教委科研计划项目(2017KJ094).
关键词 参数在线辨识 遗传算法 无迹粒子滤波算法 荷电状态 电动汽车 parameter online identification genetic algorithm unscented particle filter(UPF)algorithm state of charge(SOC) electric vehicles
  • 相关文献

参考文献2

二级参考文献12

  • 1吴红杰,齐铂金,郑敏信,陈波,舒伟辉.混合动力电动车电池荷电状态描述方法[J].北京航空航天大学学报,2005,31(2):223-226. 被引量:3
  • 2Lu R G, Wu G L,Ma R, et al. Model based state of charge estimation method for ultra-capacitor[C]. Proceedings of the IEEE Vehicle Power and Propulsion Conference, 2008:1-4.
  • 3Rodrigues S, Munichandraiah N, Shukla A K. A review of state-of-charge indication of batteries by means of AC impedance measurements[J]. Journal of Power Sources, 2000, 87(1): 12-20.
  • 4Huet F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries[J]. Journal of Power Sources, 1998, 70 (1): 59-69.
  • 5Ehret C, Piller S, Schroer W. State-of-charge determination for lead-acid batteries in PV-applications[C]. Proceedings of the European Photovoltaic Solar Energy Conference, 2000: 1-4.
  • 6Tsutomu Y, Kazuaki S, Ken ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedings of the Telecommunications Energy Conference, 1998: 210-214.
  • 7Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the International Electric Vehicle Symposium, 2002: 1-4.
  • 8Sabine P, Marion P, Andreas J. Methods for state-of- charge determination and their applications[J]. Journal of Power Sources, 2001, 96(1): 113-120.
  • 9Wu G L, Lu R G, Zhu C B, et al. State of charge estimation for NiMH battery based on electromotive force method[C].Proceedings of the IEEE Vehicle Power and Propulsion Conference, 2008:1-4.
  • 10侯格贤,吴成柯.遗传算法的性能分析[J].控制与决策,1999,14(3):257-260. 被引量:30

共引文献103

同被引文献97

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部