摘要
在航空重力向下延拓过程中,将重力数据中的系统误差和离散化造成的模型误差用非参数分量表达。在无外部数据的情况下,建立基于半参数核估计方法的重力向下延拓模型,为了改善泊松积分离散后的设计矩阵的病态影响,引入正则化方法,提出了综合半参数核估计和正则化方法的逆泊松积分延拓方法。基于EGM2008(earth gravity model 2008)模型计算了某地空中重力异常,采用线性项和周期项系统误差进行仿真实验,以及美国某地实测重力异常数据,验证了本文方法在改善病态性和分离系统误差方面的有效性。结果表明,本文方法在无外部数据时,能有效地分离系统误差并具有较高的精度。
In the process of downward continuation(DWC) of airborne gravity, the model error caused by discretization and systematic error in gravity data is expressed by non-parametric components. This paper proposes an inverse Poisson integral DWC method based on regularization method and semi-parametric kernel estimation, establishes gravity DWC model based on semi-parametric kernel estimation method without external data, reduces the ill-conditioned influence of the design matrix after Poisson integral discretization and introduces regularization method. It calculates the simulated airborne gravity anomaly based on the EGM2008 model and performs the simulation experiment using linear term and periodic term systematic error. The simulation experiment and the measured gravity anomaly data in the United States show the effectiveness of the proposed method in improving the ill-conditioned and separation system errors. The results show that the proposed method can effectively separate systematic errors and has high precision when there is no external data.
作者
伍丰丰
黄海军
任青阳
樊文有
陈洁
潘雄
WU Fengfeng;HUANG Haijun;REN Qingyang;FAN Wenyou;CHEN Jie;PAN Xiong(School of Geography and Information Engineering,China University of Geosciences,Wuhan 430079,China;School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China;Department of Navigation Engineering,Naval University of Engineering,Wuhan 430043,China;Guangxi Water&Power Design Institute Co.Ltd,Nanning 530023,China)
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2020年第10期1563-1569,共7页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金(41631072,41874009,11471105)。
关键词
航空重力
向下延拓
逆泊松积分
半参数核估计
正则化方法
airborne gravity
downward continuation
inverse Poisson integral
semi-parametric kernel estimation
regularization method