摘要
为提高循环神经网络(RNN)推理速度,分析了循环神经网络(RNN)在CPU的运行时间瓶颈、输入向量稀疏性和参数规模.设计RNN加速器核实现矩阵-稀疏向量乘并行计算,并同时将多个输入向量完整存储于片上SRAM,以复用部分权重从而降低DDR带宽需求.通过Verilog HDL对RNN加速器核进行RTL描述,并搭建仿真环境,将语音识别算法DeepSpeech2的网络参数输入RNN加速器核进行功能仿真.基于FPGA,将MicroBlaze处理器与RNN加速器核搭建SoC,由MicroBlaze实现激活函数、向量逐元素相乘等其它计算.实现了DeepSpeech2中RNN部分推理计算,与只使用MicroBlaze处理器相比,速度提高23倍,能量消耗降低9.4倍.
To accelerate inference of Recurrent Neural Networks(RNN),the elapsed time on CPU,the sparsity of input vectors and the parameter size of RNNs are analyzed.RNN acceleration core for parallel matrix-sparse vector multiplication is designed.Multiple input vectors are stored on-chip,to reuse part of the weight matrix,reducing data bandwidth between DDR and on-chip SRAM.The RNN acceleration core is implemented in RTL using Verilog HDL.And behavior simulation environment is built,using parameters of a speech recognition algorithm-DeepSpeech2-as inputs of the acceleration core.Acceleration SoC is built on FPGA with MicroBlaze CPU and the RNN acceleration core.The MicroBlaze is responsible for computings like activation functions and element-wise multiplication of vectors.When accelerating RNN part of Deep Speech 2,23x speed and 9.4x energy efficiency are achieved compared to MicroBlaze only.
作者
范军
巩杰
吴茜凤
何虎
FAN Jun;GONG Jie;WU Xi-feng;HE Hu(Department of Microelectornics and Nanoelectronics,Tsinghua University,Beijing 100084,China)
出处
《微电子学与计算机》
北大核心
2020年第11期1-5,12,共6页
Microelectronics & Computer
基金
国家重点研发计划(2016YFA0201804)。
关键词
循环神经网络
加速器
矩阵向量乘
语音识别
recurrent neural network
accelerator
matrix vector multiplication
speech recognition