摘要
运用马尔科夫决策过程表示用户调度各种类型家电和可再生能源发电量的不确定性,提出了一种新的用户福利最大化模型。为平衡用户用电效用(表示用户使用购买到的电力之后的满意程度)和支付成本之间的关系,引入权重因子作为未知变量。运用改进的模拟退火算法求解该模型并得到最优权重值。最后,仿真结果验证了模型的合理性和算法的可行性,可以指导用户进行能源优化配置和家电用电调度,以达到用户侧总体利益最大化的目标。
Applying Markov decision process to represent the uncertainty in the scheduling of various types of appliances and renewable energy generation,a new model of maximizing the expected users’welfare was proposed.In order to balance the relationship between the utility of users’electricity consumption(indicating the satisfaction degree of users after using the purchased electricity)and the payment cost,a weight factor was introduced as an unknown variable.The model was solved by an improved simulated annealing algorithm and the optimal weight factor was obtained.The simulation results verify the rationality of the model and the feasibility of the algorithm,which can guide users to optimize the energy allocation and schedule different appliances,so as to achieve the goal of maximizing the overall interest of users.
作者
许志宏
高岩
程潘红
XU Zhihong;GAO Yan;CHENG Panhong(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;Public Teaching Department,Rizhao Polytechnic,Rizhao 276826,China)
出处
《上海理工大学学报》
CAS
CSCD
北大核心
2020年第5期467-478,共12页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11171221)。
关键词
可再生能源
马尔科夫决策过程
模拟退火算法
实时电价
renewable energy source
Markov decision process
simulated annealing algorithm
realtime pricing