期刊文献+

喷雾汽化器汽化效率优化的数值研究

Numerical study on optimization of vaporization efficiency of spray vaporizer
下载PDF
导出
摘要 为进行喷雾汽化器内多相流动和汽化效率的优化研究,基于计算流体力学(CFD)方法,对高沸点的碳酸乙烯酯(EC)液体在富氢气体中的混合和汽化过程进行了三维数值模拟。结果显示,汽化器内按流型可分为回流过渡区和管流区,其轴向分界点可通过计算气相介质中径向温差或喷雾介质径向浓差随轴向距离变化率的最大值求得;通过优化管流区结构可增大汽化效率,同时减小汽化器高度。当气体初始温度为220℃时,回流过渡区占整个汽化容积的40%,其中的EC汽化量占汽化器总汽化量的83%,回流过渡区单位汽化容积的汽化效率约为管流区相应效率的7.3倍。对占汽化器有效容积60%的管流区进行结构优化后,显著增大了汽化效率,可因此缩减汽化器高度约22%。 In order to optimize the multi-phase flow and vaporization efficiency in a spray vaporizer, the mixing and vaporization processes of high boiling point ethylene carbonate(EC) liquids in hydrogen-rich gas were numerically simulated by computational fluid dynamics(CFD) method. The results showed that the vaporizer internal space could be divided into two parts according to the flow pattern, namely the reflux transition zone and the tube flow zone. The axial boundary point between the former and the latter could be obtained by analyzing the maximum value of the first derivative of the radial temperature difference or the radial concentration difference of vaporized liquid with the axial distance. The vaporization efficiency could be increased and the height of the vaporizer could be reduced by optimizing the structure of the flow zone. When the initial temperature of the gas was 220 ℃, the reflux transition zone accounted for 40% of the total vaporization volume, in which the EC vaporization accounted for 83% of the total vaporization of the vaporizer. And the vaporization efficiency of the unit vaporization volume in the reflux transition zone was about 7.3 times of the corresponding efficiency in the tube flow zone. After the structure optimization of the tube flow zone which accounts for 60% of the effective volume of the vaporizer, the vaporization efficiency was significantly increased, and the vaporizer height could be reduced by about 22%.
作者 田秀山 丁干红 彭新文 赵倩 赵娜 刘殿华 吕建宁 TIAN Xiu-shan;DING Gan-hong;PENG Xin-wen;ZHAO Qian;ZHAO Na;LIU Dian-hua;LV Jian-ning(Technology Development Center,Wison Engineering Ltd.,Shanghai 201210,China;School of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2020年第5期67-71,76,共6页 Natural Gas Chemical Industry
基金 国家重点研发计划项目(2018YFB0605803)。
关键词 喷雾 汽化器 碳酸乙烯酯 多相流 数值研究 三维数值模拟 spray vaporizer ethylene carbonate multiphase flow numerical study three-dimensional numerical simulation
  • 相关文献

参考文献6

二级参考文献42

  • 1魏明锐,文华,刘永长,张煜盛.喷雾过程液滴碰撞模型研究[J].内燃机学报,2005,23(6):518-523. 被引量:21
  • 2张培培,陶华,顾小锋.CAD/CAE集成中参数化有限元建模的研究[J].现代制造工程,2006(9):62-63. 被引量:18
  • 3程小苏,方海鑫,刘泽昊,张迎元,王岳,王永朝,梁志先,曾令可.喷雾干燥制备陶瓷微球过程的数值模拟[J].华南理工大学学报(自然科学版),2007,35(2):107-111. 被引量:11
  • 4TamirA 伍沅译.撞击流反应器:原理和应用[M].北京:化学工业出版社,1996..
  • 5Abraham Ziv, Kfir Luzzatto, Abraham Tamir. Application of free impinging streams to the combustion of gas and pulverized[J]. Combustion Science and Technology. 1988,60 : 31-44.
  • 6Choi Y C,Li X Y,Park T J.Numerical study on the coal gasification characteristics in an entrained coal gasifier[J].Fuel,2001,80:2193—2201.
  • 7Shih T H, Liou W W, Shabbir A, et al. A new κ-ε eddy-viscosity model for high reynolds number turbulent flows-model development and validation [J]. Computers Fluids, 1995,24(3):227-238.
  • 8张兰.直接蒸发冷却空调的技术现状及应用前景[C]∥第四届全国制冷空调新技术研讨会论文集,2006:416-419
  • 9Watanabe H. Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier [J]. Fuel. 2006. 85: 1935-1943.
  • 10Slezak Andrew. John M Kuhlman. Lawrence J Shadle. James Spenik. Shaoping Shi. CFD simulation of entrainedflow coal gasification: coal particle density/size fraction effects [J]. Powder Technology. 2010. 203: 98-108.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部