期刊文献+

MoS2/Bi2S3复合物的控制合成及其光催化还原水中Cr(Ⅵ) 被引量:1

CONTROLLING PREPARATION AND PROPERTIES OF MoS/BiS COMPOSITE FOR PHOTOCATALYTIC REDUCTION OF Cr(Ⅵ)
下载PDF
导出
摘要 采用一步水热法在180℃下制备了花状MoS2/Bi2S3复合异质结。在硫源充足的前提下,通过控制原料中钼源和铋源的比例(Mo∶Bi=0.5,Mo∶Bi=1,Mo∶Bi=1.5),制备了不同负载比的MoS2/Bi2S3复合物。相比于纯Bi2S3,复合物具有更好的光催化还原六价铬活性,并且Mo∶Bi=1的复合物性能最佳,这可能归结于MoS 2优良的吸附性能、MoS2/Bi2S3复合物异质结的构建,极大地提高了光生电子空穴对的分离。本文对复合物的形貌、性能进行了详细的讨论,提出了可能的光催化还原反应的机理。 MoS2/Bi2S3 composite heterojunction was prepared by one-step hydrothermal method at 180℃.Using sufficient sulfur source,MoS2/Bi2S3 composite with different loading ratio was obtained by controlling the proportion of Mo source and Bi source(Mo∶Bi=0.5,Mo∶Bi=1,Mo∶Bi=1.5).Compared with pure Bi2S3,the composites have the better visible light adsorption and higher photocatalytic reduction of hexavalent chromium.Moreover,MoS2/Bi2S3 composite(Mo∶Bi=1)exhibites the best photocatalytic performance,which may be related to the excellent visible light adsorption,the construction of MoS2/Bi2S3 composite heterojunction and high separation rate of electron-hole pairs.Above phenomenea was discussed in detail,and further the possible reaction mechanism of photocatalytic reduction of hexavalent chromium was proposed.
作者 宋继梅 朱婉蓉 鲁韵 汪旭乐 杨捷 许洋 方今 吴翰 SONG Ji-mei;ZHU Wan-rong;LU Yun;WANG Xu-le;YANG Jie;XU Yang;FANG Jin;WU Han(School of Chemistry and Chemical Engineering,Anhui University,Hefei 230601,Anhui,China)
出处 《中国钼业》 2020年第5期41-48,共8页 China Molybdenum Industry
关键词 MoS2/Bi2S3 异质结 Cr(Ⅵ) 光催化性能 MoS2/Bi2S3 heterojunction hexavalent chromium photocatalytic property
  • 相关文献

参考文献4

二级参考文献42

  • 1Pan, A.; Zhu, T.;Wu, H. B.; Lou, X.W. Chem. Eur. J. 2013, 19(2), 494. doi: 10.1002/chem.201203596.
  • 2Yoshino, A. Angew . Chem. Int. Edit. 2012, 51 (24), 5798. doi: 10.1002/anie.v51.24.
  • 3Pan, A.;Wu, H. B.; Yu, L.; Lou, X.W. Angew. Chem. 2013, 125 (8), 2282. doi: 10.1002/ange.201209535.
  • 4Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci. 2011, 4(8), 2682. doi: 10.1039/c0ee00699h.
  • 5Xiao, J.;Wang, X.; Yang, X. Q.; Xun, S.; Liu, G.; Koech, P. K.; Liu, J.; Lemmon, J. P. Adv. Funct. Mater. 2011, 21 (15), 2840. doi: 10.1002/adfm.201002752.
  • 6Liu, H.; Su, D.; Zhou, R.; Sun, B.;Wang, G.; Qiao, S. Advanced Energy Materials 2012, 2(8), 970. doi: 10.1002/aenm.v2.8.
  • 7Ding, S.; Chen, J. S.; Lou, X.W. Chem. Eur. J. 2011, 17 (47), 13142. doi: 10.1002/chem.201102480.
  • 8Jiang, Z.;Wang, C.; Du, G.; Zhong, Y. J.; Jiang, J. Z. J . Mater. Chem. 2012, 22 (19), 9494.
  • 9Luo, B.; Fang, Y.;Wang, B.; Zhou, J.; Song, H.; Zhi, L. Energy Environ. Sci. 2012, 5(1), 5226. doi: 10.1039/c1ee02800f.
  • 10Liu, H.; Su, D.;Wang, G.; Qiao, S. J. Mater. Chem. 2012, 22 (34), 17437. doi: 10.1039/c2jm33992g.

共引文献10

同被引文献39

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部