期刊文献+

电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响 被引量:2

Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma
下载PDF
导出
摘要 采用考虑粒子热效应及粒子温度各向异性的温等离子体介电张量模型,借助绝缘边界条件下径向密度均匀分布等离子体柱中螺旋波与Trivelpiece-Gould(TG)波的本征模色散关系,理论分析了螺旋波等离子体中典型电子温度范围内中等密度、低磁场情形下m=–1,0,+1角向模的能量沉积特性.研究结果表明:在w/2π=13.56 MHz,Ti=0.1Te参量条件下,存在一个临界轴向静磁场值B0,c,当B0<B0,c时螺旋波变为消逝波;存在一个临界电子温度值Te,c,当Te<Te,c时TG波变为消逝波;当波频率靠近电子回旋频率时,TG波的回旋阻尼开始显著陡升;当电子横纵向温度比Te⊥/Tez大于某一临界值时,TG波变为增长波;在螺旋波放电典型电子温度Te∈(3 eV,5 eV)范围内,TG波朗道阻尼和碰撞阻尼致使的能量沉积在不同范围内占据主导地位. Understanding the power deposition characteristic of high density helicon wave plasma source is critical for further investigating into the discharge mechanism of helicon wave discharge. Based on the warm plasma dielectric tensor model which contains both the particle thermal effect and temperature anisotropy and using the insulting boundary condition, the eigenmode dispersion relation of helicon wave and Trivelpiece-Gould(TG)wave propagating in radially uniform plasma column are numerically obtained. Then based on the eigenmode dispersion relation and exact field distribution in the plasma column, the mode coupling properties between the helicon wave and TG wave, the parametric dependence of the cyclotron damping properties of the electron cyclotron wave(TG wave) and power deposition properties of the m = –1, 0, +1 modes under moderate plasma density and low magnetic fields conditions are theoretically investigated in typical helicon plasma parameter range. The detailed investigations are shown below. Under typical helicon plasma parameter conditions, i.e.wave frequency w/2π = 13.56 MHz and the ion temperature is one-tenth of the electron temperature, there exist a critical magnetic field value B0,c and a critical electron temperature value Te,c for which under the conditions of B0 < B0,c the helicon wave becomes an evanescent wave and the TG wave becomes an evanescent wave when Te < Te,c. The cyclotron damping of the TG wave dramatically increases as the wave frequency approaches to the electron cyclotron frequency. The TG wave becomes a growth wave when the ratio of perpendicular electron temperature to parallel electron temperature is above a certain value. For the high magnetic field, i.e. w/wce =0.1, most of the power deposition is deposited in the central core region, while for the low magnetic field, i.e.w/wce = 0.9, the power is deposited mainly in the outer region of plasma column. For typical helicon plasma electron temperature range, Te ∈(3 eV, 5 eV), the energy depositions induced by the collisional damping and Landau damping of the TG wave are dominant for different electron temperature ranges, which implies that different damping mechanisms have different heating intensities for electrons. Under current parameter condition, compared with the m = +1 mode, the m = –1 and m = 0 mode of the TG wave play major role in the power deposition process, although the cyclotron damping of the TG wave dominates the power deposition in this typical electron temperature range. All these conclusions provide some useful clues for us to better understand the high ionization mechanism of helicon wave discharge.
作者 李文秋 赵斌 王刚 Li Wen-Qiu;Zhao Bin;Wang Gang(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;Princeton Plasma Physics Laboratory,Princeton University,Princeton 08543,USA;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第21期122-131,共10页 Acta Physica Sinica
基金 国家留学基金委公派留学项目(批准号:201804910897) 国家“万人计划”科技创新领军人才(批准号:Y8BF130272)资助课题.
关键词 螺旋波等离子体 模式耦合 功率沉积 色散关系 helicon plasma mode coupling power deposition dispersion relation
  • 相关文献

参考文献2

二级参考文献38

  • 1Han K, Jiang B H, Ji Y C 2012 Acta Phys. Sin. 61 075209 (in Chinese).
  • 2Geng S F, Tang D L, Qiu X M 2012 Acta Phys. Sin. 61 075210 (in Chinese).
  • 3Zhang R, Zhang D X, Zhang F, He Z, Wu J J 2013 Acta Phys. Sin. 62 025207 (in Chinese).
  • 4Bering E A, Brukardt M 2006 AIAA Aerospace Science Meeting and Exhibit 766.
  • 5Feldman M S, Choueiri E Y 2011 Internation Electric Propulsion Conference 220.
  • 6Toki K, Shinohara S, Tanikawa T, Shamrai K P 2006 Thin Solid Films 506–507 597.
  • 7Chen F F 2008 IEEE Trans. Plasma Sci. 36 2095.
  • 8Boswell R W 1984 Plasma Phys. Contr. Fusion 26 1147.
  • 9Chen F F 1991 Plasma Phys. Contr. Fusion 33 339.
  • 10Shamrai K P, Taranov V B 1994 Plasma Phys. Contr. Fusion 36 1719.

共引文献22

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部