期刊文献+

机器学习在IgA肾病中应用的进展

Research progress of machine learning in IgA nephropathy
下载PDF
导出
摘要 IgA肾病(IgAN)是世界范围内最常见的原发性肾小球疾病,临床及病理表现存在异质性,是导致终末期肾病的常见原因。早期发现并采取有效措施干预,对改善IgAN的结局尤为重要。机器学习方法能够使IgAN的病理分析、早期检测与诊断、预后预测等环节更加自动化和准确化。文章从病理诊断优化、无创性特异性生物标志物发现和疾病进展的预测及预后评估等方面对机器学习方法在IgAN中应用情况进行综述。 IgA nephropathy(IgAN)is the most common primary glomerulonephritis in the world with heterogeneous clinical and pathological manifestations.It is one of the leading causes of end-stage renal disease(ESRD).Early detection and effective intervention are especially important to improve the outcome of IgAN.Machine learning methods can make the pathological analysis,early detection and diagnosis,and prognosis prediction of IgAN more automated and accurate.The paper reviews application of machine learning methods in IgAN in pathological diagnosis optimization,non-invasive specific biomarker discovery,disease progression prediction and prognosis evaluation,and its development prospects.
作者 石念峰 王荣勤 吴和燕(综述) 夏正坤(审校) SHI Nian-feng;WANG Rong-qin;WU He-yan;XIA Zheng-kun(Department of Pediatrics,General Hospital of Eastern Theater Command,PLA,Nanjing 210002,Jiangsu,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
出处 《医学研究生学报》 CAS 北大核心 2020年第10期1111-1115,共5页 Journal of Medical Postgraduates
基金 江苏省卫生健康委员会医学创新团队培养项目(CXTDA2017022) 江苏省重点研发计划-临床前沿技术项目(BE2017719)。
关键词 IGA肾病 风险预测 生物标志物 机器学习 immunoglobulin A nephropathy prediction biomarkers machine learning
  • 相关文献

参考文献5

二级参考文献33

  • 1王金泉.糖基化异常IgA1分子在IgA肾病致病机制中的作用[J].医学研究生学报,2011,24(10):9-12. 被引量:2
  • 2Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity[EB/OL]. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation.
  • 3Ginsberg J, Mohebbi MH, Patel RS, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232): 1012-1014.
  • 4Wang Y, He Y, Qin Z, et al. Evaluation of functional genetic variants at 6q25.1 and risk of breast cancer in a Chinese population[J]. Breast Cancer Res, 2014, 16(4): 422.
  • 5Guan X, Sturgis EM, Lei D, et al. Association of TGF-beta1 genetic variants with HPV16-positive oropharyngeal cancer[J]. Clin Cancer Res, 2010, 16(5): 1416-1422.
  • 6Guan X, Liu Z, Wang L, et al. Functional repeats (TGYCC)n in the p53-inducible gene 3 (PIG3) promoter and susceptibility to squamous cell carcinoma of the head and neck[J]. Carcinogenesis, 2013, 34(4): 812-817.
  • 7Guan X, Liu Z, Liu H, et al. A functional variant at the miR-885-5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer[J]. FASEB J, 2013, 27(4): 1404-1412.
  • 8Guan X, Sturgis EM, Song X, et al. Pre-microRNA variants predict HPV16-positive tumors and survival in patients with squamous cell carcinoma of the oropharynx[J]. Cancer Lett, 2013, 330(2): 233-240.
  • 9Guan X, Wang LE, Liu Z, et al. Association between a rare novel TP53 variant (rs78378222) and melanoma, squamous cell carcinoma of head and neck and lung cancer susceptibility in non-Hispanic Whites[J]. J Cell Mol Med, 2013, 17(7): 873-878.
  • 10Wang Y, Yang F, Wang Y, et al. Prognostic role of androgen receptor expression in triple-negative breast cancer[J]. J Clin Oncol, 2015,33:1076.

共引文献2319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部