摘要
IgA肾病(IgAN)是世界范围内最常见的原发性肾小球疾病,临床及病理表现存在异质性,是导致终末期肾病的常见原因。早期发现并采取有效措施干预,对改善IgAN的结局尤为重要。机器学习方法能够使IgAN的病理分析、早期检测与诊断、预后预测等环节更加自动化和准确化。文章从病理诊断优化、无创性特异性生物标志物发现和疾病进展的预测及预后评估等方面对机器学习方法在IgAN中应用情况进行综述。
IgA nephropathy(IgAN)is the most common primary glomerulonephritis in the world with heterogeneous clinical and pathological manifestations.It is one of the leading causes of end-stage renal disease(ESRD).Early detection and effective intervention are especially important to improve the outcome of IgAN.Machine learning methods can make the pathological analysis,early detection and diagnosis,and prognosis prediction of IgAN more automated and accurate.The paper reviews application of machine learning methods in IgAN in pathological diagnosis optimization,non-invasive specific biomarker discovery,disease progression prediction and prognosis evaluation,and its development prospects.
作者
石念峰
王荣勤
吴和燕(综述)
夏正坤(审校)
SHI Nian-feng;WANG Rong-qin;WU He-yan;XIA Zheng-kun(Department of Pediatrics,General Hospital of Eastern Theater Command,PLA,Nanjing 210002,Jiangsu,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China)
出处
《医学研究生学报》
CAS
北大核心
2020年第10期1111-1115,共5页
Journal of Medical Postgraduates
基金
江苏省卫生健康委员会医学创新团队培养项目(CXTDA2017022)
江苏省重点研发计划-临床前沿技术项目(BE2017719)。
关键词
IGA肾病
风险预测
生物标志物
机器学习
immunoglobulin A nephropathy
prediction
biomarkers
machine learning