摘要
针对传统的模糊C-均值聚类算法(FCM算法)对大数据集收敛速度慢,聚类不均匀类别样本时出现大类吃小类现象以及对初始聚类中心点要求高等问题,提出了一种基于均衡样本集思想的模糊C-均值聚类算法(均衡FCM算法)。选取Landsat8、Sentinel2A遥感卫星采集获得的哈尔滨市宾县2018年遥感图像,验证方法的有效性。结果显示,提出的均衡FCM算法可以改善传统FCM算法存在的问题,验证了均衡FCM算法的有效性。
To solve the conventional fuzzy C-means clustering algorithm(FCM algorithm)problems including slow convergence speed for large data sets,the occurrence of neglect of smaller clustered groups when the clustering categories are uneven,and high requirement on the initial clustering center points,this paper proposed a fuzzy clustering algorithm model based on balanced data sets(BDS-FCM algorithm).To verify the effectiveness,the remote sensing images of Bin County,Harbin City collected by Landsat8 and Sentinel2A remote sensing satellites in 2018 was selected as experimental subjects.Results of the experiment show that the proposed BDS-FCM algorithm can improve the conventional FCM algorithm and verify the effectiveness of BDS-FCM.
作者
李奇生
赵成萍
尹子琴
李博
周新志
LI Qi-sheng;ZHAO Cheng-ping;YIN Zi-qin;LI Bo;ZHOU Xin-zhi(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China;Cloud-computing Academic Society of Yunnan Province,Kunming 650032,China;College of Water Resource&Hydropower,Sichuan University,Chengdu 610065,China)
出处
《江苏农业学报》
CSCD
北大核心
2020年第5期1163-1168,共6页
Jiangsu Journal of Agricultural Sciences
基金
国家自然科学基金项目(U1933123)。
关键词
均衡C-均值聚类算法(均衡FCM算法)
混合像元
面积提取
图像分类
fuzzy C-means clustering algorithm based on balanced data sets(BDS-FCM algorithm)
mixed pixel
area extraction
image classification