期刊文献+

演化信息协助的动态协同随机漂移粒子群优化算法 被引量:1

Dynamic cooperative random drift particle swarm optimization algorithm assisted by evolution information
下载PDF
导出
摘要 为了改善随机漂移粒子群算法的群体多样性,通过演化信息的协助,提出动态协同随机漂移粒子群优化(CRDPSO)算法。利用上下文粒子的向量信息,粒子之间的动态协作增加了种群多样性,这有助于提高群体的搜索能力,并使整个群体协同搜索全局最优值。同时在演化过程中的每次迭代,利用二维空间分割树结构来存储算法中的估计解的位置和适应度值,从而实现快速适应度函数逼近。由于适应度函数逼近增强了变异策略,因此变异是自适应且无参数的。通过典型测试函数将CRDPSO算法和差分进化算法(DE)、协方差矩阵适应进化策略算法(CMA-ES)、非重复访问遗传算法(cNrGA)以及三种改进的量子行为粒子群算法(QPSO)进行比较。实验结果表明,不管是对于单峰还是多峰测试函数,CRDPSO的性能均是最优的,证明了该算法的有效性。 A dynamic Cooperative Random Drift Particle Swarm Optimization(CRDPSO)algorithm assisted by evolution information was proposed in order to improve the population diversity of random drift particle swarm optimization.By using the vector information of context particles,the population diversity was increased by the dynamic cooperation between the particles,to improve the search ability of the swarm and make the whole swarm cooperatively search for the global optimum.At the same time,at each iteration during evolution,the positions and the fitness values of the evaluated solutions in the algorithm were stored by a binary space partitioning tree structure archive,which led to the fast fitness function approximation.The mutation was adaptive and nonparametric because of the fitness function approximation enhanced the mutation strategy.CRDPSO algorithm was compared with Differential Evolution(DE),Covariance Matrix Adaptation Evolution Strategy(CMA-ES),continuous Non-revisiting Genetic Algorithm(cNrGA)and three improved Quantum-behaved Particle Swarm Optimization(QPSO)algorithms through a series of standard test functions.Experimental results show that the performance of CRDPSO is optimal for both unimodal and multimodal test functions,which proves the effectiveness of the algorithm.
作者 赵吉 程成 ZHAO Ji;CHENG Cheng(Wuxi Research Center for Environmental Science and Engineering,Wuxi Jiangsu 214153,China;School of IoT Engineering,Jiangnan University,Wuxi Jiangsu 214122,China;China Ship Scientific Research Center,Wuxi Jiangsu 214082,China)
出处 《计算机应用》 CSCD 北大核心 2020年第11期3119-3126,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61672263) 江苏省高校“青蓝工程”中青年学术带头人项目(2019) 无锡环境科学与工程研究中心中青年学术带头人项目(2018)。
关键词 群体智能 动态协同进化 演化信息 自适应无参变异 二维空间分割 swarm intelligence dynamic cooperative evolution evolution information adaptive nonparametric mutation Binary Space Partitioning(BSP)
  • 相关文献

参考文献3

二级参考文献25

  • 1倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 3Bergh FVD. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 4Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. Proc of 2004 Congress on Evolutionary Computation. Piscataway, 2004: 325-331.
  • 5Fang W, Sun J, Ding Y R, et al. A review of quantumbehaved particle swarm optimization[J]. IETE Technical Review, 2010, 27(4): 336-348.
  • 6Clerc M, Kennedy J. The particle swarm: Explosion, stability and convergence in a multidimentional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 7Sun J, Xu W B, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]. Proc of IEEE Conf on Cybernetics and Intelligent Systems. Singapore, 2004:111-116.
  • 8Sun J, Xu W B, Feng B. Adaptive parameter control for quantum-behaved particle swarm optimization on individual level[C]. Proc of the 2005 IEEE Int Conf on Systems, Man and Cybernetics. Hawaii, 2005, 4: 3049-3054.
  • 9Liang J J, Qin A K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
  • 10Mikki S M, Kishk A A. Investigation of the quantum particle swarm optimization for electromagnetic application[C]. IEEE Antennas and Propagation Society Int Symposium. Washington, 2005, 2A: 45-48.

共引文献40

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部