期刊文献+

标记关联的多声呐多目标航迹融合方法 被引量:3

Label-associated multi-sonar multi-target track fusion method
下载PDF
导出
摘要 为解决基于高斯混合概率假设密度滤波器的多声呐多目标跟踪算法无法提供目标航迹问题,本文提出了一种标记关联的航迹生成、融合方法。该方法通过关联算法、外推法实现了航迹标记更新,解决了目标航迹生成问题。通过标记关联信息,实现了航迹融合。仿真试验表明:该方法不仅可以滤除假目标干扰,还可以准确地提供目标航迹信息。 The multi-sonar multi-target tracking algorithm of density filter based on Gaussian mixture probability hypothesis cannot provide target tracking.To overcome this problem,this study proposes a label-associated track generation and fusion method.This method realizes track marker updates by using the association algorithm and extrapolation method,and solves the problem of target track generation.Track fusion is realized using label-associated information.Simulation experiments show that this method not only filters out false targets but also provides target track information accurately.
作者 生雪莉 陈洋 郭龙祥 郝豪言 周媛媛 殷敬伟 SHENG Xueli;CHEN Yang;GUO Longxiang;HAO Haoyan;ZHOU Yuanyuan;YIN Jingwei(Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China;College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第9期1346-1352,共7页 Journal of Harbin Engineering University
基金 国家重点研发计划(2018YFC1405902) 国家自然科学基金项目(51979061,51779061).
关键词 目标跟踪 假目标(信息理论) 数据融合 数据标记 线性系统 卡尔曼滤波器 状态估计 关联规则 target tracking false target(information theory) data fusion data marker linear system Kalman filter state estimation association rules
  • 相关文献

参考文献6

二级参考文献154

  • 1严卫生,高磊,张礴,段培贤.水下目标跟踪技术[J].火力与指挥控制,2000,25(2):2-7. 被引量:8
  • 2田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 3高剑,徐德民,严卫生,张福斌.无迹卡尔曼滤波及其在三维水下目标跟踪系统中的应用[J].船舶工程,2005,27(3):24-28. 被引量:6
  • 4李启虎.第一讲 进入21世纪的声纳技术[J].物理,2006,35(5):402-407. 被引量:16
  • 5Puranik S, Tugnait J K. Tracking of multiple maneuvering tar-gets using multiscan JPDA and IMM filtering[J]. IEEE Trans. on Aerospace and Electronic Systems, 2007,43 (1) : 23 - 35.
  • 6Blackman S S, Co R, Segundo CA EI. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine ,2004,19(1) :5 - 18.
  • 7Joo S W, Chellappa R. A multiple-hypothesis approach for mul- tiobiect visual tracking[J]. IEEE Trans. on Image Processing, 2007,16(11) :2849 - 2854.
  • 8Mahler R. Multitarget Bayes filtering via first order multitarget- moments[J]. IEEE Trans. on Aerospace and Electronic Sys- tems,2003,39(4) :1152 - 1178.
  • 9Panta K, Vo B, Singb S. Improved probability hypothesis density (PHD) filter for multitarget traeking[ C]//Proc, of the 3rd Inter- national Conference on Intelligent Sensing and Information Process- ing, 2005 : 213 - 218.
  • 10Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets[J]. IEEE Trans. on Aerospace and Electronic" Systems, 2008 : 44 (1) : 87 - 98.

共引文献96

同被引文献35

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部