期刊文献+

面向电力智能安监的极低分辨率目标检测算法 被引量:9

Very low-resolution object detection algorithms for electric intelligent safety supervision
下载PDF
导出
摘要 为检测电力作业人员是否穿戴安全装备,提出一种面向电力智能安监的极低分辨率目标识别算法。在面对安全帽、护目镜等极低分辨率的目标检测时,当前目标检测算法无法保证检测精度。通过稀疏表示模型对极低分辨率下的目标图像进行超分辨率增强,对增强图像进行检测,对是否佩戴安全帽、护目镜等行为进行判别,满足电力智能安监的新需求。实验结果表明,该方法比当前最佳目标检测算法具有更高的检测精度,可以达到智能监控系统的实时性要求。 To solve the potential security problems of power system security caused by the workers unwearing the safety equipment,a very low-resolution object detection algorithm for power intelligent security monitoring was proposed.An algorithm based on sparse representation was proposed to detect small objects such as safety helmet and goggles.The very low-resolution objects were upscaled by sparse representation,the upscaled images were fed into the detectors and the abnormal behaviors were discriminated.Experimental results indicate that the proposed method outperforms the state-of-the-art methods,and can meet the real-time requirements of intelligent monitoring system.
作者 郭敬东 李晓林 GUO Jing-dong;LI Xiao-lin(Fujian Provincial Enterprise Key Laboratory of High Reliable Electric Power Distribution Technology,Electric Power Research Institute of State Grid Fujian Electric Power Limited Company,Fuzhou 350007,China;School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《计算机工程与设计》 北大核心 2020年第11期3188-3192,共5页 Computer Engineering and Design
基金 国家自然科学基金青年基金项目(51407104)。
关键词 智能安监 目标识别 电力安全 稀疏表示 背景建模 intelligent safety monitoring object detection electric power security sparse representation background modeling
  • 相关文献

参考文献4

二级参考文献20

共引文献20

同被引文献221

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部