期刊文献+

二维移动网格矢通量分裂法 被引量:1

Two-dimensional Moving Grid Vector Flux Splitting Method
下载PDF
导出
摘要 针对二维欧拉方程组的数值求解问题,构造基于移动网格的矢通量分裂格式。采用移动网格法对网格进行合理剖分,使得在间断区域网格自适应加密,且整个计算区域的网格不再规则化;用守恒型迎风格式代替中心格式以减少数值耗散。在空间方向上构造新的二阶迎风矢通量分裂格式对方程进行半离散,在时间方向上采用三阶强稳定的龙格-库塔方法进行推进。数值结果表明,新算法具有良好的间断捕捉能力和高分辨率。 Aiming at the numerical solution of the two-dimensional Euler equations,a vector flux splitting scheme based on a moving grid was constructed.The moving grid method was used to reasonably divide the grid,so that the grid in the discontinuous area was adaptively encrypted;and the grid in the calculation area was no longer regular.The conservative upwind style was used instead of central format to reduce numerical dissipation.A new second-order upwind vector flux splitting scheme was constructed in the space direction to semi-discrete the equation;and a third-order strong stable Runge-Kuta method was used for propulsion in the time direction.The numerical results showed that the new algorithm had good intermittent capture capability and high resolution.
作者 李彬彬 郑素佩 王令 LI Binbin;ZHENG Supei;WANG Ling(School of Science, Chang′an University, Xi′an 710064, China)
机构地区 长安大学理学院
出处 《郑州大学学报(理学版)》 CAS 北大核心 2020年第4期96-102,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(11971075,11401045) 陕西省自然科学基金项目(2018JQ1027)。
关键词 二维欧拉方程组 移动网格法 矢通量分裂格式 守恒型迎风格式 自适应变步长 2D Euler equation moving grid method vector flux splitting scheme conservative upwind style adaptive variable step size
  • 相关文献

参考文献6

二级参考文献12

  • 1高正红,航空学报,1988年,9卷,3期
  • 2高正红,1988年
  • 3马铁犹,计算流体动力学,1989年
  • 4董素琴,李德元,水鸿寿,冯小四.多介质流体力学计算的一种二维非守恒型差分格式[J].计算物理,1997,14(3):274-282. 被引量:4
  • 5Reitz R D. One-Dimensional Compressible Gas Dynamics Calculations Using the Boltzmann Equations[J].{H}Journal of Computational Physics,1981,(1):108-123.
  • 6Pullin D I. Direct Simulation Methods for Compressible Invis-cid Ideal Gas Flow[J].{H}Journal of Computational Physics,1980,(2):231-244.
  • 7Deconinck H,Powell K G,Roe P L. Multi-dimensional Generalization Schemes for Scalar Advection[J].AIAA Jour-nal,1990,(10):60-69.
  • 8Elizarova T G,Chetverushkin B N. Kinetic Algorithms for Calculating Gas Dynamic Flows[J].Journal Computational Mathematics and Mathematics Physics,1985,(5):164-169.
  • 9Qu K. Development of Lattice Boltzmann Method for Com-pressible Flows[M].Singapore:National University of Singa-pore Press,2008.
  • 10盛秀兰,艾尧,吴宏伟.一个类似Burgers方程的数值解[J].郑州大学学报(理学版),2010,42(3):23-26. 被引量:2

共引文献7

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部