摘要
针对二维欧拉方程组的数值求解问题,构造基于移动网格的矢通量分裂格式。采用移动网格法对网格进行合理剖分,使得在间断区域网格自适应加密,且整个计算区域的网格不再规则化;用守恒型迎风格式代替中心格式以减少数值耗散。在空间方向上构造新的二阶迎风矢通量分裂格式对方程进行半离散,在时间方向上采用三阶强稳定的龙格-库塔方法进行推进。数值结果表明,新算法具有良好的间断捕捉能力和高分辨率。
Aiming at the numerical solution of the two-dimensional Euler equations,a vector flux splitting scheme based on a moving grid was constructed.The moving grid method was used to reasonably divide the grid,so that the grid in the discontinuous area was adaptively encrypted;and the grid in the calculation area was no longer regular.The conservative upwind style was used instead of central format to reduce numerical dissipation.A new second-order upwind vector flux splitting scheme was constructed in the space direction to semi-discrete the equation;and a third-order strong stable Runge-Kuta method was used for propulsion in the time direction.The numerical results showed that the new algorithm had good intermittent capture capability and high resolution.
作者
李彬彬
郑素佩
王令
LI Binbin;ZHENG Supei;WANG Ling(School of Science, Chang′an University, Xi′an 710064, China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2020年第4期96-102,共7页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(11971075,11401045)
陕西省自然科学基金项目(2018JQ1027)。
关键词
二维欧拉方程组
移动网格法
矢通量分裂格式
守恒型迎风格式
自适应变步长
2D Euler equation
moving grid method
vector flux splitting scheme
conservative upwind style
adaptive variable step size