期刊文献+

平面调和映照的凸半径

The Convex Radius of the Plane Harmonic Mapping
原文传递
导出
摘要 首先对K-拟正则调和映照的系数进行估计,进而估计其凸半径;其次,研究系数满足一定条件的调和映照,并给出其相应的精确的凸半径估计. In this paper,the coefficients of the K-quasi-regular harmonic mapping is estimated and then its convex radius is obtained.Secondly,the accurate estimation of convex radius of harmonic mapping is given,which the coefficients satisfying certain conditions.
作者 谢志春 李东征 XIE Zhi-chun;LI Dong-zheng(Department of Mathematics,Xiamen Institute of Technology,Xiamen 361021,China;Public Course Teaching Department,Xiamen Medical College,Xiamen 361023,China)
出处 《数学的实践与认识》 北大核心 2020年第20期208-212,共5页 Mathematics in Practice and Theory
基金 福建省中青年教师教育科研项目(JAT170807,JAT170812) 厦门工学院科研项目(KY2017004,KY2017009)。
关键词 K-拟正则调和映照 有界调和映照 凸半径 quasi-regular harmonic mapping bounded harmonic mapping convex radius
  • 相关文献

参考文献6

二级参考文献49

  • 1CHEN HuaiHui Department of Mathematics, Nanjing Normal University, Nanjing 210097, China.Some new results on planar harmonic mappings[J].Science China Mathematics,2010,53(3):597-604. 被引量:2
  • 2黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 3CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci I Math, 1984,9A(1)3-25.
  • 4SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J]. New Zeal J Math, 1999,28(2) :275- 284.
  • 5OZTURK M, YALGIN S, YAMANKARADENIZ M A subclass of harmonic univalent functions with negative coefficients[J]. Appl Math Comput, 2003,142(2/3) : 469-476.
  • 6OZTURK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions[J]. Appl Math Comput, 2004,154(2) : 449-459.
  • 7JAHANGIRI J M, SILVERMAN H. Harmonic close-to-convex mappings[J]. J Appl Math and Stochastic Analysis, 2002,15(1) :23-28.
  • 8JAHANGIRI J M. Harmonic functions starlike in the unit disk[J]. J Math Anal, 1999,235(2):470-477.
  • 9PAVLOVIC M Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk[J]. Ann Aead Sci Fenn (Series A1): Math,2002,27(2):365-372.
  • 10KALAJ D. Quasiconformal harmonic functions between convex domains [J]. Publications De L' Institut Mathematique, 2004,76 (90) :3-20.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部