期刊文献+

基于人工鱼群算法的声矢量传感器阵列的最大似然DOA估计 被引量:2

Maximum Likelihood DOA Estimation Based on Artificial Fish Swarm Algorithms for Acoustic Vector Sensor Array
下载PDF
导出
摘要 在阵列信号处理中,极大似然法(ML)对波达方向(DOA)估计有很好的性能,但由于多维非线性搜索的计算复杂,很难应用于工程中。为了降低ML方法的计算复杂度,提出了一种改进人工鱼群算法(AFSA)的声矢量传感器阵列的ML-DOA估计方法。仿真结果表明,与基于遗传算法(GA)、粒子群优化算法(PSO)和微分进化算法(DE)的ML-DOA估计相比,该算法具有更快的收敛速度、更低的RMSE、更低的计算复杂度和更稳定的性能。 Maximum likelihood(ML)method has good performance for direction of arrival(DOA)estimation in array signal processing,but it is hardly applicable to engineering because of the computation complexity in determining the signal azimuth by multi-dimensional nonlinear search.In order to reduce the computational complexity of ML method,an ML DOA estimation based on Artificial Fish Swarm Algorithms(AFSA)algorithm for acoustic vector sensor array was proposed.The simulation results show that proposed algorithm has faster convergence speed,lower RMSE,lower computational complexity,and more stable performance compared with the ML DOA estimation based on genetic algorithm(GA),particle swarm optimization(PSO),and differential evolution(DE)algorithm,and it is more suitable for engineering applications.
作者 王鹏 贺雪芳 张明星 白艳萍 WANG Peng;HE Xuefang;ZHANG Mingxing;BAI Yanping(School of Science, North University of China, Taiyuan 030051, China)
机构地区 中北大学理学院
出处 《太原理工大学学报》 CAS 北大核心 2020年第6期845-851,共7页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61774137) 山西省自然科学基金资助项目(201801D121026,201701D121012,201701D221121) 山西省回国留学人员科研项目(2016-088)。
关键词 波达方向估计 最大似然法 人工鱼群算法 声矢量传感器阵列 direction of arrival(DOA)estimation artificial fish swarm algorithms(AFSA) maximum likelihood(ML) acoustic vector sensor array
  • 相关文献

参考文献5

二级参考文献49

  • 1王明亮,闵新力,薛君志.基于改进人工鱼群算法的WSN覆盖优化策略[J].微电子学与计算机,2015,32(6):78-81. 被引量:14
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 3戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 4Stoica P, Sharman K C. Maximum likelihood methods for direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech and Signal Ptvcessing, 1990, 38, 1132-1143.
  • 5Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propaga- tions, 1986, 34, 276-280.
  • 6Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37, 984-995.
  • 7Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. 1EEE Transac-tions on Acoustics, Speech and Signal Processing, 1988, 36, 1553-1559.
  • 8Fessler J, Hero A. Space-alternating generalized expecta- tion-maximization algorithm. IEEE Transactions on Signal Processing, 1994, 42, 2664-2677.
  • 9Bresler Y, Macovski A. Exact maximum likelihood pa- rameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34, 1081-1089.
  • 10Gershman A B, Stoica P. New MODE-based techniques for direction finding with an improved threshold performance. Signal Processing, 1999, 76, 221-235.

共引文献923

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部