期刊文献+

Polydopamine Modified Biomimetic Gold Nanoparticles for Dual Photothermal Therapy

下载PDF
导出
摘要 Our study producted Polydopamine modified gold nanoflowers with controlled morphology for anti-tumor photothermal therapy.The branch structure containsabundant(Au NFs).By adjusting the reduction rate,the dosage of reducing agent(sodium borohydride)and the reduction temperature,we can adjust tthe morphology and particle size of Au NFs.We found that the lower reaction temperature is,the more abundant the surface branching structure of gold nanoflowers is,by adjusting the reaction temperature.and the largest specific surface area of golden nanopowder was found at 0℃.The results of TEM indicated that with the increase of sodium borohydride,the diameter of gold nano flowers gold nanoflowers decreased and was in the range of 60~100nm,and it has good EPR effect After that,we modify poly(dopamine)(PDA)biomimetic layer on the surface of golden nanoparticles to obtain Au NFS@PDA.Poly(dopamine)has the ability,of photothermal conversion,which can enhance the plasma resonance ability and biocompatibility of gold nanoflowers in the near infrared region.We can control the thickness of polydopamine layer on the surface of gold nanoflowers between 7~15nm by adjusting dopamine DA concentrationgold nanoflowers.Au NFS@PDA was characterized by its morphology and physical properties.We detect(UV-Vis)spectra in the near infrared region.And it showed obvious absorption peaks in the near infrared region of 575~650nm.Under the 808nm irradiation laser,the photothermal conversion of gold nanoflowers and polydopamine can be rapidly increased to 57°C.Fourier Transform Infrared Absorption Spectroscopy(FTIR)and X-ray Diffraction(XRD)analysis showed that polydopamine was modified successfully,Au NFS@PDA and Au NFs had no obvious difference in crystal form.The cell viability test showed that the bionic Au NFS@PDA had good biocompatibility and showed good antitumor activity against HeLa cells under NIR irradiation.The cell viability was only 12%.Therefore,we can use Au NFS@PDA with good biocompatibility as a promising photothermal conversion agent in tumor therapy.
出处 《Advances in Modern Oncology Research》 2019年第1期6-11,共6页 现代肿瘤学研究进展(英文)
  • 相关文献

参考文献1

二级参考文献22

  • 1Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N. J.; West, J.; Drezek, R. Nanoshell-enabled photonics-basedimaging and therapy of cancer. Technol. Cancer. Res. T. 2004, 3, 33-40.
  • 2Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. lnstrum. 2006, 77, 41101-41122.
  • 3Oraevsky, A.; Karabutov, A. Optoacoustic Tomography. In Biomedical Photonics Handbook. T. Vo-Dinh, Ed.; CRC; Boca Raton, FL, 2003; pp 34-31.
  • 4Li, C. H.; Wang, L. V. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 2009, 54, R59-R97.
  • 5Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602~31.
  • 6Wang, L. H. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458-1462.
  • 7Lu, W.; Huang, Q.; Geng, K. B.; Wen, X. X.; Zhou, M.; Guzatov, D.; Brecht, P.; Su, R.; Oraevsky, A.; Wang, L. V. et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010, 31, 2617-2626.
  • 8Nie, L. M.; Wang, S. J.; Wang, X. Y.; Rong, P. F.; Bhirde, A.; Ma, Y.; Liu, G.; Huang, P.; Lu, G. M.; Chen, X. Y. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small 2014, 10, 1585-1593.
  • 9Wang, Y. W.; Xie, X. Y.; Wang, X. D.; Ku, G.; Gill, K. L.; O'Neal, D. P.; Stoica, G.; Wang, L. V. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004, 4, 1689-1692.
  • 10Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914-1918.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部