期刊文献+

基于人工智能的无人机区域侦察方法研究现状与发展 被引量:18

Status and Development of Regional Reconnaissance Methods of UAV Based on Artificial Intelligence
下载PDF
导出
摘要 区域侦察是无人机研究领域的一个重要分支。由于实际任务和环境十分复杂,区域侦察控制方法必须具备较快的计算速度、较强的自主性和智能性。人工智能因具有学习能力强、效率高、融合度高等特性被应用于区域侦察任务中。本文系统介绍了区域侦察问题的背景并综述了基于人工智能解决该问题的方法,主要分为构造并优化目标函数的启发式算法和求解最优价值或策略的深度强化学习方法这两类。通过对上述方法的全方位比较,发现深度强化学习因具有自学习和在线学习的性能,能很好地适应复杂、未知环境进而能快速、准确解决区域侦察问题。此外,本文还探讨了无人机区域侦察技术的发展趋势及深度强化学习面临的挑战。 Regional reconnaissance is an important branch of unmanned aerial vehicle(UAV) research. Due to the complexity of the actual mission and environment, the control method of regional reconnaissance must be provided with fast calculation speed, strong autonomy and intelligence. Artificial intelligence has been used in regional reconnaissance because of its strong learning ability, high efficiency, and high degree of integration. This paper systematically introduces the background of the regional reconnaissance problem and summarizes the methods based on artificial intelligence to solve this problem, which are mainly divided into two categories: heuristic algorithms for constructing and optimizing the objective function and deep reinforcement learning methods for solving the optimal value or strategy. Given by a comprehensive comparison of the above methods, it is found that deep reinforcement learning performs self-learning and online learning well, which can adapt to complex and unknown environments,and further it can quickly and accurately solve regional reconnaissance problems. In addition, this paper also discusses the development trend of regional reconnaissance technology and the challenges faced by deep reinforcement learning.
作者 吴兆香 欧阳权 王志胜 马瑞 丛玉华 Wu Zhaoxiang;Ouyang Quan;Wang Zhisheng;Ma Rui;Cong Yuhua(Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Nanjing University of Science and Technology,Nanjing 210023,China)
出处 《航空科学技术》 2020年第10期57-68,共12页 Aeronautical Science & Technology
基金 江苏省高校自然科学研究面上项目(18KJB520023) 南京理工大学紫金学院校科研项目(2019ZRKX0401006)。
关键词 人工智能 区域侦察 深度强化学习 启发式算法 自主智能 artificial intelligence regional reconnaissance deep reinforcement learning heuristic algorithm autonomous intelligence
  • 相关文献

参考文献15

二级参考文献65

  • 1沈延航,周洲,祝小平.基于搜索理论的多无人机协同控制方法研究[J].西北工业大学学报,2006,24(3):367-370. 被引量:11
  • 2沈延航,周洲,王雪.攻击型无人机巡弋搜索航路优化设计与仿真[J].火力与指挥控制,2006,31(7):43-45. 被引量:1
  • 3周延安,梅刚.反辐射无人机搜索路径规划研究[J].舰船电子对抗,2006,29(5):8-10. 被引量:6
  • 4彭辉,沈林成,霍霄华.多UAV协同区域覆盖搜索研究[J].系统仿真学报,2007,19(11):2472-2476. 被引量:40
  • 5Arsie A, Savla K, Frazzoli E. Efficient routing algorithms for multiple vehicles with no explicit communications[J].IEEE Trans. on Automatic Control ,2009,54(10) :2302 - 2317.
  • 6Sheng W H, Yang Q Y, Tan J D, et al. Distributed multi-robot coordination in areaexploration[J]. Robotics and Autonomous Systems ,2006,12(54) :945 - 955.
  • 7Amigoni F, Gatti N, Ippedico A. A game-theoretic approach to determining efficient patrolling strategies for mobile robots[C]// Proc. of the International Conference on Web Intelligence and Intelligent Agent Technology, 2008 : 500 - 503.
  • 8Pavone M, Savla K, Frazzoli E. Sharing the load: mobile robotic networks in dynamic environments[J].IEEE Robotics and Automation Magazine ,2009,16(2) :52 - 61.
  • 9Shen D, Chen G S, Cruz J B, et al. Game-theoretic modeling and control of military air operations with retaliatory civilians [C]// Proc. of the IEEE Aerospace Conference, 2010 : 1 - 10.
  • 10Zhang L, Li P F. Study on air formation to ground attack defends decision making in duple-fuzzy condition[C]//Proc. of the 2nd International Conference on Computer Engineering and Technology, 2010 : 698 - 702.

共引文献153

同被引文献124

引证文献18

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部