摘要
以玉米毛状根再生植株和玉米自交系P131为材料,在严格控制环境因素的条件下,通过叶绿素荧光诱导动力学曲线测定分析了干旱胁迫和复水处理对玉米毛状根再生植株光系统Ⅱ叶绿素荧光特性的影响.结果显示,玉米毛状根再生植株叶片光系统Ⅱ的原初最大光能利用效率(Fv/Fm)、潜在光化学效率(Fv/Fo)、实际光化学量子产量(ФPSⅡ)、非光化学淬灭(NPQ)和光化学猝灭系数(qP)均随干旱胁迫的加剧而下降,复水后逐渐恢复稳态;玉米毛状根再生植株非光化学猝灭系数(NPQ)、调节性能量耗散的量子产量(ФNPQ)与非调节性能量耗散的量子产量(ФNO)均随干旱胁迫的程度增强而升高.与对照组相比,玉米毛状根再生植株的Fv/Fm、Fv/Fo、ETRmax、Ik降幅均相对较小.不同干旱时间胁迫下,玉米毛状根再生植株的Fv/Fm、Fv/Fo、ФPSⅡ和qP均高于对照组,复水后,恢复能力显著高于对照组.干旱胁迫和复水处理下,玉米毛状根再生植株光系统Ⅱ具有较高的光能转化和利用效率、实际光化学量子效率和有效光化学量子产量,通过调节光合碳同化能力及电子激发态应激能力,缓解植物在干旱过程中的光抑制,保护植物光合机构.
Based on the maize regenerative plants from hairy root inbred lines P131 for material,under the condition of strict control of environmental factors,through the analysis of the determination of chlorophyll fluorescence induction kinetics curve of drought stress and water treatment of maize regenerative plants from hairy root PSⅡchlorophyll fluorescence characteristics of the system.Results show that maize regenerative plants from hairy root leaf light in the original systemⅡmaximum light energy use efficiency(Fv/Fm),potential photochemical efficiency(Fv/Fo),the actual photochemical quantum yield(ФPSⅡ)and non-photochemical quenching(NPQ)and light chemical quenching coefficient(qP)are declining with the increase of drought stress,the complex water recovery gradually;non-photochemical quenching(NPQ),quantum yield of regulated energy dissipation(ФNPQ)and quantum yield of non-regulated energy dissipation(ФNO)increased with the intensification of drought stress.Compared with the control group,the Fv/Fm,Fv/Fo,ETRmax and Ik of the regenerated hairy roots of corn were relatively small.Under different time of drought stress,maize regenerative plants from hairy rootof Fv/Fm,Fv/Fo,ФPSⅡand qP were higher than the control group,after water,resilience is significantly higher than the control group.Compared with control group,under drought stress and water treatment,maize regenerative plants from hairy root optical system has the high light energy conversion and utilization efficiency,the actual photochemical quantum efficiency and effective photochemical production,by adjusting the carbon assimilation ability and the excitation energy use efficiency,effectively dissipation reducing excess light energy photoinhibition,protect the photosynthetic mechanism,to maintain a higher photosynthetic performance.
作者
未晓巍
张祖衔
谈韫
周晓馥
WEI Xiao-wei;ZHANG Zu-xian;TAN Yun;ZHOU Xiao-fu(College of Life Science,Jilin NormalUnnversity,Siping 136000,China;Key laboratory for Plant Resources Science and Green production,Jilin Normal Unversity,Siping 136000,China)
出处
《吉林师范大学学报(自然科学版)》
2020年第4期86-92,共7页
Journal of Jilin Normal University:Natural Science Edition
基金
吉林省科技发展计划项目(20150622022JC),中央引导地方科技发展资金吉林省基础研究专项(202002016JC)。