摘要
本文研究两个竞争保险公司之间的非零和随机微分博弈问题.利用博弈和随机动态规划方法,获得了违约前和违约后的纳什均衡策略和相应的值函数.最后对纳什均衡策略进行参数分析,并给出经济解释.
This paper studies the non-zero-sum stochastic differential game between two competing insurance companies.Applying game theory and stochastic dynamic programming techniques,we derive the Nash equilibrium strategies and the corresponding value functions for the post-default case and the pre-default case.Finally,we conduct some numerical examples to draw some economic interpretations from these results.
作者
李国柱
马世霞
LI Guo-zhu;MA Shi-xia(School of Sciences,Hebei University of Technology,Tianjin 300401,China)
出处
《数学杂志》
2020年第6期662-672,共11页
Journal of Mathematics
基金
国家自然科学基金项目(11301133,11471218).
关键词
非零和随机微分博弈
相对绩效
CEV模型
可违约风险
Non-zero-sum stochastic differential game
relative performance
CEV model
default risk