摘要
电厂脱硫设施设备复杂、运行成本和维护难度较高,尤其是在电厂烟气超低排放标准下,脱硫设施的运行压力尤为显现。针对脱硫系统遇到的问题,给出基于大数据智能分析诊断平台实现电厂脱硫系统最优化的方法,从大数据智能分析诊断平台脱硫系统的数据分析、系统框架及其优化的角度,为电厂脱硫优化提供理论支撑。
The desulfurization facilities of power plants are complex and difficult to operate and maintain.Especially with the new situation of ultra-low emission standards for power plants,the pressure on the operation of desulfurization facilities is particularly evident.Aiming at the problems encountered by the desulfurization system,this paper presents a method based on the big data intelligent analysis and diagnosis platform to realize the optimization of the desulfurization system of the power plant.From the perspective of data analysis,system framework and optimization of the desulfurization system under the big data intelligent analysis and diagnosis platform,desulfurization optimization of power plants provides theoretical support.
作者
李虎
戴勇
LI Hu;DAI Yong(Anhui Huadian Suzhou Power Generation Co.,Ltd.;Shanghai Xingrui Automatic Instrument Co.,Ltd.)
出处
《上海节能》
2020年第10期1216-1220,共5页
Shanghai Energy Saving
关键词
脱硫系统
大数据
智能
最优化
Desulfurization System
Big data
Intelligence
Optimization