期刊文献+

新型独立三栅FinFET单粒子瞬态效应TCAD分析 被引量:1

SET Sensitivity Analysis of Novel Tri-Independent-Gate FinFET by TCAD
下载PDF
导出
摘要 针对独立三栅FinFET器件及其反相器的单粒子瞬态效应展开了深入研究。首先分析了N型独立三栅器件中最敏感区域的位置以及不同工作电压对器件敏感性的影响。然后,基于独立三栅器件独特的电流控制方式搭建五种不同工作模式的反相器单元,对重离子撞击NMOS下拉管最敏感区域的单粒子瞬态效应(SET)敏感性进行了比较。三维数值TCAD仿真结果表明,脉冲峰值电流与重离子在沟道中的路径体积成正比,且最敏感区域为漏与沟道之间的空间电荷区,工作电压会影响沟道势垒,从而影响器件的SET。另外,不同工作模式的反相器对改善抗辐照能力具有参考意义。 The effects of heavy ion hitting on tri-independent-gate(TIG)FinFET and inverters were investigated deeply.At first,the most sensitive area of N-type TIG FinFET and the influence of supply voltage on radiation sensitivity were discussed.Then,five kinds of inverters with different work modes were established based on the unique current control methods.The sensitivity of those inverters’single event transient was compared by ion striking on the most sensitive area of N-type pull down transistor.The results of 3 D numerical TCAD simulations showed that the peak drain currents under different angles were in directly proportional to the volume of ion path,and the space charge region between drain and channel was the most sensitive area.The supply voltage had an effect on single event transient through electric potential of channel region.In addition,inverters with different work modes were meaningful to improve the radiation hardness.
作者 韩燕燕 孙亚宾 李小进 石艳玲 HAN Yanyan;SUN Yabin;LI Xiaojin;SHI Yanling(Shanghai Key Lab.of Multidimensional Inform.Processing,Depart.of Elec.Engineer.,School of Communication and Electronic Engineering,East China Normal University,Shanghai 200241,P.R.China)
出处 《微电子学》 CAS 北大核心 2020年第5期683-687,共5页 Microelectronics
基金 国家科技重大专项资助项目(2016ZX02301003) 国家自然科学基金资助项目(61574056,61704056) 上海扬帆计划资助项目(YF1404700) 上海市科学技术委员会资助项目(14DZ2260800)。
关键词 独立三栅FinFET 三维数值TCAD仿真 重离子辐射 单粒子瞬态效应 反相器 tri-independent-gate FinFET 3D numerical TCAD simulation heavy ion radiation SET inverter
  • 相关文献

参考文献1

二级参考文献20

  • 1Benedetto J M, Eaton P H and Mavis D G 2006 IEEE Trans. Nucl. Sci. 53 3462.
  • 2He C H, Geng B, Yang H L, Cheng Z H, Wang Y P and Li G Z 2003 Acta Phys. Sin. 52 180 (in Chinese).
  • 3He C H, Geng B, He B P, Yao Y J, Li Y H, Peng H L, Lin D S, Zhou H and Chen Y S 2004 Acta Phys. Sin. 53 194 (in Chinese).
  • 4Zhang Q X, Hou M D, Liu J, Wang Z G, Jin Y F, Zhu Z Y and Sun Y M 2004 Acta Phys. Sin. 53 566 (in Chinese).
  • 5Li H 2006 Acta Phys. Sin. 55 3540 (in Chinese).
  • 6Amusan O A, Witulski A F, Massengill L W, Bhuva B L, Fleming P R, Alles M L, Sternberg A L, Black J D and Schrimpf R D 2006 IEEE Trans. Nucl. Sci. 53 3253.
  • 7Dodd P E and Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583.
  • 8Gadlage M J, Ahlbin J R, Narasimham B, Ramachan- dran V, Dinkins C A, Pate N D, Bhuva B L, Schrimpf R D, Massengill L W, Shuler R L and McMorrow D 2010 IEEE Tran. Device Mater. Rel. 10 157.
  • 9Amusan O A, Massengill L W, Baze M P, Bhuva B L, Witulski A F, Black J D, Balasubramanian A, Casey M C, Black D A, Ahlbin J R, Reed R A and MeCurdy M W 2008Proceeding of the 46th Annual IEEE International Relia- bility Physics Symposium April 27-May 1, 2008 Phoenix, USA, p. 468.
  • 10Wissel L, Oldiges P and Guo D 2010 IEEE Trans. Nucl. Sci. 57 3234.

共引文献1

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部