期刊文献+

微流控芯片技术在体外诊断领域中的应用进展 被引量:6

Current Advances in In-vitro Diagnostic Techniques Based on Microfluidic Chip
下载PDF
导出
摘要 微流控芯片技术具有高度集成化、微型化等优势,是体外诊断(In-vitro Diagnosis,IVD)未来发展依托的主要检测技术平台之一。微流控芯片技术将大型实验室的各个单元集成在微米,甚至纳米级微结构芯片上,具有体积小、可精确控制流体、试剂消耗少等特点,与IVD整体发展方向高精度、高灵敏度及便携性相契合。本文将从生化、核酸、免疫角度入手,聚焦微流控芯片结构设计及检测原理,总结其在IVD行业中的典型应用、最新进展及未来发展趋势。 High accuracy,high sensitivity in a portable detection device will be the future development direction of in-vitro diagnostic(IVD).Fortunately,microfluidic chip has the characteristics of small volume,precise control of fluid and low reagent consumption owing to its high integration and precise fluid control.Therefore,it will be an ideal platform in the development of IVD.The increasing number of microfluidic-based IVD products were emerging with the fast advance in microfluidics.Importantly,the progressing of the microfluidic chip mainly depends on the innovation of the chip structure and detection principle.This review highlights the progress of microfluidics in IVD techniques from existing microfluidics-based in vitro diagnostic test products to the latest research advances,mainly focus on chip structure and corresponding detection principle in the field of biochemistry diagnosis,molecular diagnosis and immunity diagnosis.
作者 李顺基 肖育劲 陈鹏 刘笔锋 LI Shunji;XIAO Yujin;CHEN Peng;LIU Bifeng(College of Life Science and Technology,Huazhong University of Science and Technology,Wuhan 430074)
出处 《分析科学学报》 CAS CSCD 北大核心 2020年第5期639-645,共7页 Journal of Analytical Science
基金 国家重点研发计划(No.2016YFF0100801)。
关键词 体外诊断 微流控芯片 生化检测 核酸检测 免疫检测 In-vitro diagnosis Microfluidic chip Biochemistry diagnosis Immunity diagnosis Molecular diagnosis
  • 相关文献

参考文献7

二级参考文献159

  • 1林炳承.功能型微流控芯片实验室的高通量和规模集成[J].高等学校化学学报,2004,25(z1):121-123. 被引量:3
  • 2朱海霖,陈恒武,周永列.顺序注射可更新表面固相荧光免疫法测定人血清中免疫球蛋白G[J].分析化学,2004,32(7):841-846. 被引量:4
  • 3徐溢,吕君江,陆嘉莉,陈蓉,任峰,温志渝.电泳芯片结构和芯片电泳分离操作参数的模拟、优化和实验验证[J].分析化学,2006,34(4):437-442. 被引量:4
  • 4Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems:A novel concept for chemical sensing[ J]. Sensors and Actuators B ,1990,1 ( 1 ) :244 --248.
  • 5Wittwer C T, Garling D J. Rapid cycle DNA amplication:Time and temperature optimization [ J ]. Biotechniques, 1991,10 ( 1 ) : 76 --83.
  • 6Zhang C S,Xu J L,Ma W L,et al. PCR microfluidic devices for DNA amplification [ J ]. Biotechnology Advances, 2006,24 (3) : 243 --284.
  • 7Wang Z, Sekulovic A, Kutter J P, et al. Towards a portable micro- chip system with integrated thermal control and polymer waveguides for real-time PCR [ J ]. Electrophoresis, 2006, 27 : 5051-5058.
  • 8Kaigala G V, Hoang V N, Stickel A, et al. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis [ J ]. Analyst ,2008,133 (3) :331 -338.
  • 9Zhong R T, Pan X Y, Jiang L, et al. Simply and reliably integrating microheaters/sensors in a monolithic PCR-CE microfluidic genetic analysis system [ J ]. Electrophoresis, 2009, 30 ( 8 ) : 1297 -1305.
  • 10Dinca M P, Marin G, Aherne M,et al. Fast and accurate temperature control of a PCR microsystem with a disposable reactor[ J]. Journal of Micromechanics and Microengineering, 2009,19 (6) : 960 -1017.

共引文献27

同被引文献72

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部