期刊文献+

基于图的联合特征实体链接方法 被引量:1

A graph-based method for multi-feature entity linking
下载PDF
导出
摘要 实体链接是指将文本中的实体指称映射到知识库实体的过程,这一过程在知识图谱、知识融合领域都是关键的步骤之一.提出了一种基于图的联合特征实体链接方法,首先对知识库和文本进行预处理,然后识别文本中的命名实体指称,随后联合主题、上下文、元数据等多特征的语义相似度,在经扩充的图模型中利用重启随机游走和联合消歧选出指称的链接实体.实验结果表明,基于图的联合特征实体链接方法有效提高了实体链接效果. Entity linking refers to the process of linking entity mentioned in text with knowledge base entity,which is one of the key steps in knowledge graph and knowledge fusion.This paper proposes a graph-based method for multi-feature entity linking.This method first preprocesses the knowledge base and the text,then identifies the named entity references in the text,and then combines the semantic similarity of multiple features such as topics,context,metadata,etc.In the expanded graph model,the probability of restarting random walk is used,and the target candidate entity is selected by joint disambiguation.The results of experiment show that the joint feature-based entity linking method based on graphs effectively improves the effectiveness of entity linking.
作者 周金 朱永华 张铁男 邢毅雪 张克 ZHOU Jin;ZHU Yonghua;ZHANG Tienan;XING Yixue;ZHANG Ke(Shanghai Film Academy,Shanghai University,Shanghai 200072,China;School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期747-755,共9页 Journal of Shanghai University:Natural Science Edition
基金 上海市科委基金资助项目(14590500500)。
关键词 实体链接 实体消岐 语义相似度 重启随机游走 自然语言处理 entity linking entity disambiguation semantic relatedness random walk with restart natural language processing
  • 相关文献

参考文献7

二级参考文献76

  • 1Roth D, Ji H, Chang M W, et al. Wikification and beyond: the challenges of entity and concept groun- ding//ACL 2014. Gaithersburg, MD, 2014:7-18.
  • 2Mihalcea R, Csomai A. Wikify!: Linking documents to encyclopedic knowledge. UNT Scholarly Works, 2007, 23(5): 233-242.
  • 3Cucerzan S. Large-scale named entity disambiguation based on Wikipedia data // Proc Joint Conference on Emnlp & Cnll. Prague, 2007:708-716.
  • 4Dredze M, Mcnamee P, Rao D, et al. Entity disambiguation for knowledge base population // International Conference on Computational Linguis- tics. Beijing, 2010:277-285.
  • 5Zheng Z, Li F, Huang M, et al. Learning to link entities with knowledge base // Proceedings of the Annual Conference of the North American Chapter of the Acl. Los Angeles, 2010:483-491.
  • 6Pink G, Radford W, Cannings W, et al. Sydney CMCRC at TAC 2013 //Text Analysis Conference. Gaithersburg, MD, 2013:1-6.
  • 7Dalton J, Dietz L. A neighborhood relevance model for entity linking // Open Research Areas in Infor- mation Retrieval. Lisbon, 2013:149-156.
  • 8Alhelbawy A, Gaizauskas R. Graph ranking for collective named entity disambiguation // The 52nd Annual Meeting of the Association for Computational Linguistics (ACL2014). Gaithersburg, MD, 2014: 75- 8O.
  • 9Han X, Sun L, Zhao J. Collective entity linking in web text: a graph-based method // Proceedings of International Conference on Research & Development in Information Retrieval. Beijing, 2011:765-774.
  • 10Pearson K. The problem of the random walk. Nature, 1905, 268:2113-2122.

共引文献126

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部