期刊文献+

基于置换通风的无管工位送风气流组织特性 被引量:1

A study on Air Distribution Performance of Ductless Task Ventilation in Conjunction with Displacement Ventilation
下载PDF
导出
摘要 建立了适用于无管工位送风与置换通风复合空调系统性能分析的CFD数值模型,并探讨了工位送风参数及房间围护结构传热对复合空调系统下室内热舒适及空气品质的影响。结果表明,与单置换通风相比,加入无管工位送风可显著提高空调系统的负荷承担能力及空调房间背景温度,在合理的送风参数下,无管送风与置换通风复合系统可在约100W/m^2的围护结构(如大面积玻璃幕墙)传热负荷下营造出人体可接受的热环境。此外,与置换通风相比,复合系统下人体呼吸区内的空气龄显著降低,室内空气品质较好。研究结果验证了无管工位送风与置换通风复合系统在空调能效提升方面具有很好的潜力。 This study proposed a validated CFD model that is used to investigate the system performance of ductless task ventilation(DTV)in conjunction with displacement ventilation(DV).Under DTV system,effects of air supply parameters of task ventilation as well as heat transfer of building envelope on the indoor thermal comfort and air quality was numerically evaluated.The results indicate that in comparison with DV,the handling load and room temperature could be significantly improved under DTV system.With an envelope(especially large curtain wall)heat transfer of 100 W/m^2,acceptable thermal environment for indoor occupants could be achieved under DTV in the condition of reasonable air supply parameters.Furthermore,compared to DV,DTV system could effectively reduce the air age in the breathing zone of occupants and subsequently provide better inhaled air.This study manifests the considerable potential of DTV to improve the energy efficiency of an air conditioning system.
作者 郇超 孙雪花 于群 赵玉娇 屠冰冰 HUAN Chao;SUN Xue-hua;YU Qun;ZHAO Yu-jiao;TU Bing-bing(College of Energy Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;College of Humanities and Foreign Languages,Xi’an University of Science and Technology,Xi’an 710054,China;The Engineering Design Academy of Chang’an University,Co.,Ltd.,Xi’an 710064,China;College of Sciences,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《技术与创新管理》 2020年第6期596-601,共6页 Technology and Innovation Management
基金 国家自然科学基金(52004207)。
关键词 工位送风 置换通风 热舒适模型 空气龄 计算流体动力学 task ventilation displacement ventilation thermal comfort model air age computational fluid dynamics
  • 相关文献

参考文献2

二级参考文献41

  • 1Tritton D.J. Physical Fluid Dynamics, Second Edition. OXFORD: CLARENDON PRESS, 1988: pp.188
  • 2Nielsen P. V. The selection of turbulence models for prediction of room airflow. ASHRAE Transactions, 1998, 104(1): 1119~1126
  • 3Chen Qingyan., Xu Weiran. A zero-equation turbulence model for indoor air flow simulation. Energy and Building, 1998, 28(1): 137~144
  • 4Srebric J., Simplified methodology for indoor environment design. [Ph.D. thesis]. USA: Massachusetts Institute of Technology, 2000
  • 5Sodec F. Economic viability of cooling ceiling systems[J]. Energy and Buildings, 1999, 30(2): 195 201.
  • 6Niu J, Kooi J, Rhee H. Energy saving possibilities with cooled ceiling system[J]. Energy and Buildings, 1995, 23(2): 147-158.
  • 7Atila N, Jelena S. A critical review on the performance and design of combined cooled ceiling and displacement ventilation[J]. Energy and Buildings, 2002, 34(5): 497-509.
  • 8Loveday D L, Parsons K C, Taki A H. Displacement ventilation environments with chilled ceilings: thermal comfort design within the context of the BS EN ISO7730 versus adaptive debate[J]. Energy and Buildings, 2002, 34(6): 573-579.
  • 9Hodder S G, Loverday D L, Parsons KC. Thermal comfort in chilled ceiling and displacement ventilation environments: vertical radiant temperature asymmetry effects[J]. Energy and Building, 1998, 27(2): 167-173.
  • 10Ghali K, Ghadda N, Ayoub M. Chilled ceiling and displacement ventilation system for energy savings: a case study[J]. International journal of energy research, 2007, 31 (8): 743-759.

共引文献33

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部