摘要
目前常规使用的舵轮和差速轮自动导引车(automated guided vehicle,AGV)的精度和灵活性低,无法满足在大型高端产品装配过程中精确定位和导航的要求。为了进一步提高AGV的导航精度和柔性,提出了一种基于IGPS(indoor global positioning system,室内全球定位系统)和麦克纳姆轮的AGV高精度导航控制系统。首先通过IGPS高精度定位和坐标计算获取IGPS接收器的位置坐标,其次采用车体中心提取算法和坐标转换矩阵实现接收器坐标位置到车体中心坐标的转换,最后通过对全向移动AGV的建模,采用模糊PI控制方法对AGV的路径偏差进行纠正,实现AGV的精确定位和循迹导航。利用Simulink对模糊PI控制和传统PI控制进行仿真分析,结果表明,相对于传统PI控制,模糊PI控制响应速度快,调整曲线更平滑。同时,在基于IGPS的AGV试验平台进行试验,采用激光跟踪仪对AGV重复定位位置进行测量,结果显示定位精度达到±0.2 mm。研究结果对提高AGV的高精度定位能力具有借鉴意义,也为后续可移动机器人加工模式的研究提供参考。
At present,the conventional steering wheel and differential wheel automated guided vehicle(AGV)have low precision and flexibility,which cannot meet the requirements of accurate positioning and navigation in the assembly process of large high-end products.In order to further improve the navigation precision and flexibility of AGV,a high-precision AGV navigation control system based on IGPS(indoor global positioning system)and Mecanum wheel was proposed.Firstly,the position coordinates of the IGPS receiver was obtained through IGPS high-precision positioning and coordinate calculation.Secondly,the conversion from the coordinate value of the IGPS receiver to the center coordinate of the car body was realized by the car body center extraction algorithm and coordinate conversion matrix.Finally,through the modeling of the omnidirectional moving AGV,the path deviation of AGV was corrected by using fuzzy PI control method,so as to realize the accurate positioning and tracking navigation of AGV.By using Simulink,the simulation analysis of fuzzy PI control and traditional PI control showed that fuzzy PI control had faster response speed and smoother adjustment curve compared with traditional PI control.At the same time,the test verification was carried out on the AGV test platform based on IGPS,and the repeated positioning accuracy of AGV was measured by laser tracker.The results showed that the positioning precision reached ±0.2 mm.The research results are of reference significance for improving the high-precision positioning capability of AGV,and also provide a reference for the subsequent research on the processing mode of mobile robot.
作者
王颜
刘净瑜
李光
张加波
刘星
周欣欣
WANG Yan;LIU Jing-yu;LI Guang;ZHANG Jia-bo;LIU Xing;ZHOU Xin-xin(Beijing Satellite Manufacturing Limited Company,Beijing 100094,China)
出处
《工程设计学报》
CSCD
北大核心
2020年第5期662-670,共9页
Chinese Journal of Engineering Design
基金
国家国防科技工业局国防基础科研项目(JCKY2018203C002)。