期刊文献+

基于梯度下降优化的LSTM对空气质量预测研究 被引量:5

Study on the prediction of air quality based on LSTM withgradient descent optimization
下载PDF
导出
摘要 文章以2018年~2019年的太原市空气污染物监测数据为基础,建立基于自适应调节学习率的随机梯度下降算法(Adagrad、AdaDelta、Adam)优化的LSTM循环神经网络预测模型,对太原市的空气质量指数(AQI)进行仿真预测,通过对比可得:基于Adam优化的LSTM循环神经网络不仅具备更高的预测精度,而且收敛速度也较快,为城市大气污染治理工作提供了科学合理的理论研究,具有更远的发展前景. Based on the monitoring data of air pollutants in Taiyuan city from 2018 to 2019,this paper establishes the LSTM cycle neural network prediction model optimized by the stochastic gradient descent algorithm(adagrad,adadelta,Adam)based on adaptive adjustment learning rate,and simulates and forecasts the air quality index(AQI)of Taiyuan city.Through comparison,it can be concluded that the LSTM recurrent neural network based on Adam optimization not only has the advantages of Higher prediction accuracy and faster convergence speed provide scientific and reasonable theoretical research for urban air pollution control,and have a further development prospect.
作者 曹通 白艳萍 CAO Tong;BAI Yan-ping(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《陕西科技大学学报》 CAS 2020年第6期159-164,共6页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(61774137) 山西省自然科学基金项目(201701D22111439,201701D221121) 山西省回国留学人员科研项目(2016-088)。
关键词 AQI LSTM 随机梯度下降算法 空气质量预测 AQI LSTM random gradient descent algorithm air quality forecasting
  • 相关文献

参考文献9

二级参考文献59

共引文献173

同被引文献44

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部