期刊文献+

基于频谱数据端到端的电台通联关系研究 被引量:5

End-to-end Radio Communication Relationship Recognition based on Spectrum Monitoring Data
下载PDF
导出
摘要 对无线网络中通联行为进行识别和分析,对反恐维稳等国家安全具有重要意义。通联关系是挖掘无线网络中行为关系和网络中的隐藏信息的基础。通过识别通联关系,可以推测电台在通信网络中的层级位置,进而找到网络中的关键节点。端到端是指不需要人工设计专家特征,使用深度学习的方法直接通过频谱监测数据识别通联关系。经过仿真试验发现,残差神经的网络结构可以有效识别通联关系,在测试集上识别率达到99.02%。 The identification and analysis of communications in wireless networks is of great significance to national security such as anti-terrorism and stability maintenance.The communication relationship is the basis for mining the behavior relationship in the wireless network and the hidden information in the network.Through the identification of the communication relationship,the hierarchical position of the radio station in the communication network can be inferred,and then the key nodes in the network can be found.Endto-end means that there is no need to manually design expert features,and deep learning methods are used to directly identify communication relationships through spectrum monitoring data.Simulation experiments indicate that the residual neural network structure can effectively identify the communication relationship,and the recognition rate on the test set can reach 99.02%.
作者 张海波 姚昌华 王磊 朱凡芃 ZHANG Hai-bo;YAO Chang-hua;WANG Lei;ZHU Fan-peng(Army Engineering University of PLA,Nanjing Jiangsu 210007,China;Nanjing University of Information Science&Technology,Nanjing Jiangsu 210044,China)
出处 《通信技术》 2020年第11期2745-2748,共4页 Communications Technology
基金 国家自然科学基金(No.61971439) 中国江苏省自然科学基金(No.BK20191329) 中国博士后科学基金项目(No.2019T120987) 南京信息工程大学人才启动经费。
关键词 通联关系识别 频谱监测数据 深度学习 端到端 communication relationship identification spectrum monitoring data deep learning end-to-end
  • 相关文献

参考文献2

二级参考文献10

  • 1牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 2Han J W, Kamber M. Data Mining Concepts and Techniques[M]. Singapore: Elesvier Inc., 2006.
  • 3Ye Y M, Huang Z X, Chen X J, et al. Neighborhood Density Method for Selecting Initial Cluster Centers in K-Means Clustering[C]//Proceedings of PAKDD'06: Advances in Knowledge Discovery and Data Mining, 10th Pacific-asia Conference, Singapore: Springer, 2006:189- 195.
  • 4He J, Lan M, Tan C L, et al. Initialization of Ouster Refinement Algorithms: A Review and Comparative Study[C]//Proceedings of International Joint Conference on Neural Networks, Budapest, 2004:297- 302.
  • 5Yager R R, Filer D P. Approximate Clustering Via the Mountain Method[J]. IEEE Trans. on SMC, 1994, 24(8): 1279- 1284.
  • 6Chiu S L. Fuzzy Model Identification Based on Ouster Estimation[ J ]. Journal of Intelligent and Fuzzy Systems, 1994, 2(3) : 267 - 278.
  • 7Kaufman L. Finding Groups in Data: An Introduction to Ouster Analysis[M]. New York: Wiley, 1990.
  • 8Hung M C, Yang D L. An Efficient Fuzzy C-means Clustering Algorithm[C]//Proceedings of the 2001 IEEE International Conference on Data Mining,Washington,2001:225-232.
  • 9http ://www. ics. uci. edu.
  • 10裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊,1999,21(3):320-325. 被引量:42

共引文献25

同被引文献22

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部