期刊文献+

基于智能配电网大数据分析的状态监测与故障处理方法

State Monitoring and Fault Handling Method Based on Big Data Analysis of Intelligent Distribution Network
下载PDF
导出
摘要 传统的配电网技术操作复杂,且工作效率较低。随着人们对电力使用需求的不断的增加,传统的配电网技术已经不能够满足人们的需求。为了不断的提升电力的运行质量,在传统的配电网基础上不断的增加现代化科技的成分,逐渐的形成智能配电网技术,为用户提供更好的电力服务。本文首先阐述了配电网的实际运行状况,其次介绍了配网调控业务数据的基本流程及特征,然后重点分析了智能配电网及相关技术特点,并进一步说明了智能配电网技术的应用情况,最后最初总结。 The traditional distribution network technology operation is complex,and the work efficiency is low.With the increasing demand for electricity,the traditional distribution network technology has been unable to meet the needs of people.In order to continuously improve the operation quality of power,on the basis of the traditional distribution network,constantly increase the composition of modern science and technology,and gradually form intelligent distribution network technology to provide better power services for users.This paper first describes the actual operation of the distribution network,then introduces the basic process and characteristics of the distribution network control business data,and then focuses on the analysis of intelligent distribution network and related technical characteristics,and further describes the application of intelligent distribution network technology,and finally the initial summary.
作者 陈志华 柯强 胡经纬 陈焕军 张晗 Chen Zhi-hua;Ke Qiang;Hu Jing-wei;Chen Huan-jun;Zhang Han
出处 《今日自动化》 2020年第5期75-77,共3页 Automation Today
关键词 智能 配电网 大数据 状态监测 故障处理 intelligence distribution network big data condition monitoring fault handling
  • 相关文献

参考文献9

二级参考文献51

  • 1何轶璇,罗毅,涂光瑜.EMS数据流管理系统的框架设计[J].电力系统自动化,2006,30(24):33-38. 被引量:8
  • 2庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8. 被引量:83
  • 3中国电机工程学会信息化专委会.中国电力大数据发展白皮书[S].北京:中国电力出版社,2013.
  • 4Brahma S M.Development of adaptive protection scheme for distribution systems with high penetration of distributed generation[J].IEEE Transactions on Power Delivery,2004,19(1):56-63.
  • 5Borg I,Groenen P.Modern multidimensional scaling:theory and applications[J].Journal of Educational Measurement,2006,40(3):277-280.
  • 6Breuning M M,Kriegel H P,Raymond T N.LOF:identifying density-based local outlier[C]//Proc of ACM SIGMOD International Conference on Management of Data.New York:ACM Press,2000:93-104.
  • 7UKIL A, ZIVANOVIC R. Automated analysis of power systems disturbance records: smart grid big data perspective [C]// IEEE Innovative Smart Grid Technologies--Asia (ISGT Asia), May 20-23, 2014, Kuala Lumpur, Malaysia: 126-131.
  • 8KUCUK D, BOYRAZOGLU B, BUHAN S. PQStream: a data stream architecture for electrical power quality [C]// International Workshop on Knowledge Discovery from Ubiquitous Data Streams, September 17, 2007, Warsaw, Poland : 12p.
  • 9VLAD1MIRO M, ADRIANA R G C, SHIGEAKI L. Diagnosing faults in power transformers with autoassociative neural networks and mean shift [J]. IEEE Trans on Power Delivery, 2012, 27(3): 1350-1357.
  • 10LUO Gang, SHI Dongyuan, CHEN Jinfu. Automatic indentification of transmission sections based on complex network theory [J]. IET Generation Transmission & Distribution, 2013, 8(7):1203-1210.

共引文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部