期刊文献+

基于尾缘襟翼的风力机智能叶片控制设计

Control Design of Smart Rotor forWind Turbines Based on Trailing Edge Flap
下载PDF
导出
摘要 大型风力机运行期间,叶片承受的载荷复杂多变且分布不均匀,传统的风力机变桨距控制难以及时响应快速变化的风载荷,且叶片整体转动无法实现局部控制.文章针对风力机变桨距控制的不足,设计了基于尾缘襟翼的智能叶片控制系统,并通过仿真分析智能叶片对风力机载荷的控制效果.仿真结果表明智能叶片可有效降低风力机叶根弯矩、俯仰力矩、偏航力矩的波动,从而有效减缓风力机的疲劳载荷. The rotors of large wind turbines are always suffering complex and variable loads during operation.The traditional rotor pitch control is difficult to respond the rapidly changing load in time,and the whole rotor rotation can not realize local control.In order to make up the disadvantages of rotor pitch control on large wind turbines,a control system of smart rotor based on trailing edge flap is designed,and the control effect of smart rotor for wind turbine load is analyzed by simulation in this paper.The simulation results show that the smart rotor can effectively mitigate the unbalance loads of blade root bending moment,tilt moment and yaw moment,so as to effectively slow down the fatigue load of wind turbine.
作者 何科杉 HE Ke-shan(Electrical Engineering Department,Shantou Polytechnic,Shantou 515078,China)
出处 《白城师范学院学报》 2020年第5期57-63,共7页 Journal of Baicheng Normal University
关键词 风力机 智能叶片 尾缘襟翼 疲劳载荷 wind turbines smart rotor trailing edge flap fatigue loads
  • 相关文献

参考文献2

二级参考文献28

  • 1Trkhk S Z, Duran A. Progress and recent trends in wind energy[J]. Progress in Energy and Combustion Science, 2004, 30(5): 501-543.
  • 2Selvam K, Kan S, Wingerden J W, et al. Feedback-feedforward individual pitch control for wind turbine load reduction[J]. International Journal of Robust and Nonlinear Control, 2009, 19(1): 72-91.
  • 3Van Engelen T. Control design based on aero- hydroservo-elastic linear models from TURBU (ECN)[C]// Proceedings of the European Wind Energy Conference, Mila, Italy, 2007: 7-10.
  • 4Kallesoe B S. A low-order model for analysing effects of blade fatigue load control[J]. Wind Energy, 2006, 9(5): 421-436.
  • 5Van Engelen T, Schaak P. Oblique inflow model for assessing wind turbine controllers[C]//Proceedings of the 2^nd Conference on the Science of Making Torque from Wind, Denmark, 2007: 241-246.
  • 6Hansen M, Thomsen K, Fuglsang P, et al. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments[J]. Wind Energy, 2006, 9(2): 179-191.
  • 7Bianchi F, Mantz R, Christiansen C. Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models[J] . Control Engineering Practice, 2005, 13(2): 247-255.
  • 8Stol K, Balas M. Periodic disturbance accommodating control for blade load mitigation in wind turbines [J]. Journal of Solar Energy Engineering, 2003, 125(4): 379-385.
  • 9Geyler M, Caselitz P. Individual blade pitch control design for load reduction on large wind turbines[C]// Proceedings of the European Wind Energy Conference, Italy, Milan, 2007.
  • 10Bossanyi E. Further load reductions with individual pitch control[J]. Wind Energy, 2005, 8(4): 481-485.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部