期刊文献+

一种基于稀疏系数匹配学习的图像去雾算法

An image dehazing method based on learning framework with sparse coefficient matching
原文传递
导出
摘要 针对现有基于先验假设的图像去雾算法无法普适性求解问题,提出一种基于稀疏系数匹配学习的图像去雾算法.该算法从图像复原角度出发,将雾天退化模型的求解转换为基于数据库的稀疏系数匹配.之后,从图像增强角度着手,将图像高亮区域对比度恢复量化为反馈迭代问题,进而有效提升图像的视觉效果.实验结果表明,所提出的算法在获得较好去雾结果的同时能够有效提升图像细节和对比度,并具有较强的适用性. Due to the low accuracy of the existing image dehazing methods with prior,an image dehazing method based on a learning framework with sparse coefficient matching is proposed.Firstly,the solution of the hazy degradation model is transformed to sparse coefficient matching with the database from the view of image restoration.Then,to improve the visual effect of the result,a feedback iteration is quantified by the enhancement of the contrast in highlighted areas from the view of image enhancement.Experiments demonstrate that the proposed method can remove effectively haze as well as provide a good local detail,and it has good generality.
作者 南栋 王志田 郑少华 何林远 NAN Dong;WANG Zhi-tian;ZHENG Shao-hua;HE Lin-yuan(Bengbu Campus,Academy of Army Armored Forces,Bengbu 233050,China;Institute of Aeronautics,Air Force Engineering University,Xi'án 710038,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第11期2797-2802,共6页 Control and Decision
基金 国家自然科学基金项目(61701524) 陆军装甲兵学院蚌埠校区自主立项课题项目(2018XQ21)。
关键词 图像去雾 雾天退化模型 稀疏表示 学习框架 image dehazing hazy degradation model sparse representation learning framework
  • 相关文献

参考文献2

二级参考文献79

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 7Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 8Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.
  • 9Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87.
  • 10Stark J A. Adaptive image contrast enhancement using gen- eralizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部