期刊文献+

基于卷积循环神经网络的中国民族复音音乐的乐器活动检测 被引量:5

Instrument Activity Detection of China National Polyphonic Music Based on Convolutional Recurrent Neural Network
下载PDF
导出
摘要 针对中国民族复音音乐的乐器活动检测问题,提出了一种基于卷积循环神经网络(CRNN)的复音乐器活动检测方法,该方法属于事件检测类,在秒级的时间分辨率上识别乐器活跃的起止时间及乐器种类.同时,在中国音乐学院的DCMI数据库基础上,构建了3种不同的面向10种中国民族乐器的复音数据集进行训练和评估.通过实验,我们将CRNN模型与CNN模型进行了比较,验证了模型的特点和优势. Aiming at the instrument activity detection of Chinese national polyphonic music,apolyphonic musical instrument activity detection method based on Convolutional Recurrent Neural Network(CRNN)is proposed.This method is a kind of event detection method which identifies the starting and ending time of musical instruments and musical instrument types in the second temporal resolution.At the same time,based on the Database of China Conservatory of Music(DCMI),three different polyphonic instrument detection datasets which contain 10 kinds of China national instruments were constructed for training and evaluation.Through experiments,we compare the CRNN model with the CNN model,and verify the advantages of the CRNN model.
作者 李子晋 蒋超亚 陈晓鸥 马英浩 韩宝强 LI Zijin;JIANG Chaoya;CHEN Xiao'ou;MA Yinghao;HAN Baoqiang(Musicology Department,China Conservatory of Music,Beijing 100101,China;Wangxuan Institute of Computer Technology,Peking University,Beijing 100080,China)
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期511-516,共6页 Journal of Fudan University:Natural Science
基金 国家艺术基金(01020120180529564031)。
关键词 卷积循环神经网络 中国民族音乐 乐器活动检测 convolutional recurrent neural network Chinese national music instrument activity detection
  • 相关文献

参考文献1

二级参考文献10

  • 1赵芳,吴亚栋,宿继奎.基于音轨特征量的多音轨MIDI主旋律抽取方法[J].计算机工程,2007,33(2):165-167. 被引量:17
  • 2Typke R, Wiering F, Veltkamp R C. A survey of music infor- mation retrieval systems[J]. Proc. Int. Conf. Music Inf. Retriev- al,2005 : 153 160.
  • 3Krishna A G, Sreenivas T V. Music instrument recognition: from isolated notes to soIo phrases[-C. Montreal, Canada: IEEE Internation Conference on Acoustics Speech and Signal Process- ing, 2004 : 265-268.
  • 4Logan B, Others. Mel frequency cepstral coefficients for music modelingFC. Plymouth Massachusetts: International Symposi- um on Music Information Retrieval, 2000.
  • 5Subasi A, EEG signal classification using wavelet feature extraction and a mixture of expert model[J]. Expert Systems with Applications,2007, 32(4): 1084-1093.
  • 6Martinez J M. Standards- MPEC7 overview of MPEC7 de- scription tools, part 2[J]. Multimedia, IEEE, 2002,9 (3) : 83- 93.
  • 7O. M..Solomon. The use of DFT windows in signal-to-noise ratio and harmonic distortion computations[J]. IEEE Trans. on Instrum. and Measur, 1994,43(2) : 194-199.
  • 8M. R. Portnoff, Short-time Fourier analysis of sampled speech [J]. IEEE Trans. Aeoust. Speech Signal Process, 1981,29 (3): 364-373.
  • 9Yu C, Ooi B C, Tan K L, et al. Indexing the distance An ef- ficient method to knn processingEC2. Roma, Italy: Proceedings of the 27th VLDB Conference,2001421-430.
  • 10Moreau N, Kim H, Sikora T. Phonetic confusion matrix based spoken document retrievalEC. Proceeding of the 23ra Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2000:81 87.

共引文献4

同被引文献41

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部